Pile-Up in CCD cameras

CCD events

Frame #1

Events which land within a single Frame and don't touch are registered As good events.

"Good" events with different patterns

What is pile-up?

Frame #1

Pile-up occurs when two or more events fall within the same pixel(s) within a single frame

Energy pile-up

Apparent single pixel event at 4 keV

Pattern pile-up

Frame #1

event 1 event 2

Pattern pile-up occurs when two or more events fall within the same pixel(s) within a single frame

Pattern pile-up / Grade migration

Apparent double pixel event at 4 keV

Pattern pile-up - triple

Frame #1

event 1 event 2

Pile-up occurs when two or more events fall within the same pixel(s) within a single frame

Pattern pile-up / Grade migration

1 keV (single)

3 keV (double)

Apparent triple pixel event at 4 keV

Pattern pile-up - quadruple

Frame #1

Pile-up occurs when two or more events fall within the same pixel(s) within a single frame

Pattern pile-up / Grade migration

1 keV (double)

3 keV (double)

Apparent quad pixel event at 4 keV

24 Nov 2020

Event destruction

Frame #1

At what flux is it important ?

Pile-up depends on the frame time (Observing mode), the count rate (filter and spectral-model) and the Point Spread Function (PSF) but very roughly in standard mode:

XMM EPIC-pn (0.2-12 keV) > $5x10^{-12} \text{ ergs/s/cm}^2$

XMM EPIC-MOS (0.2-12 keV) > $3x10^{-12}$ ergs/s/cm²

Chandra – ACIS (0.2-12 keV) > $5x10^{-12}$ ergs/s/cm²

Swift-XRT (0.3-10 keV) > $2x10^{-11}$ ergs/s/cm²

NuSTAR – The sun or Sco X-I in flaring states ©

Astrosat-SXT (0.3-10 keV) $> 2x10^{-9} \text{ ergs/s/cm}^2$

Suzaku-XIS (0.5-10 keV) > $5x10^{-11}$ ergs/s/cm²

Images – XMM-Newton EPIC-pn

2MASS 1446+68 0.5 c/s 3C273 9.4 c/s MKN 421 54 c/s

Pile-up destroys events in the centre of the PSF

Images – Chandra ACIS-HETG

Oth order image from an ACIS-HETG observation of a bright X-ray binary.

From "Chandra_ABC guide to Pile-up"

Piled-up event fractions

Spectral deformation

An absorbed power-law appears as a power-law with a different slope

Koch-Mehrin 2016: CAL-TN-0214

Estimation Methods

- Pattern Fractions epatplot (XMM)
- Spectral fitting Chandra fitting in ISIS
- Diagonal event fraction
- Pre-calculated tables

Estimation Methods – pattern fractions

Estimation Methods – model fitting

Chandra : estimate pile-up level using a model in ISIS

XMM-Newton : simultaneous fit of spectra extracted at various annuli

Estimation Methods – diagonal events

Frame #1

event 1 event 2

Two possibilities:

One event with a bad pattern (unlikely)

Two or more events landing in a single frame (pile-up)

The fraction of diagonal to single-pixel events in the PSF core gives an indication of the level of pile-up.

Estimation Methods – tables

XMM-Newton EPIC cameras

Instrument	Mode	Frame time	Conservative [s ⁻¹]	Tolerant limit [s ⁻¹]
EPIC-pn	Extended Full Frame	199.1 ms	0.7	1.5
	Full Frame	73.4 ms	2	4
	Large Window	47.7 ms	3	6
	Small Window	5.7 ms	25	50
EPIC-MOS	Full Frame	2.6 s	0.5	1
	Large Window	0.9 s	1.5	3
	Small Window	0.3 s	4.5	9

Conservative limit = 2-3% flux loss and <1% spectral distortion Tolerant limit = 4-6% flux loss and 1-1.5% spectral distortion

Remedies

- Observing Mode / Parameters Selection
- Place source off-axis / Use Thick Filter
- Annular extraction
- Pattern 0 only spectra pros and cons
- Diagonal pixel correction
- Chandra pile-up model spectral fitting
- "Add an Event" method

Observing parameters

Instrument	Mode	Frame time	Conservative [s ⁻¹]	Tolerant limit [s ⁻¹]
EPIC-pn	Extended Full Frame	199.1 ms	0.7	1.5
	Full Frame	73.4 ms	2	4
	Large Window	47.7 ms	3	6
	Small Window	5.7 ms	25	50
EPIC-MOS	Full Frame	2.6 s	0.5	1
	Large Window	0.9 s	1.5	3
	Small Window	0.3 s	4.5	9

Downside = smaller area, less exposed area to measure background = higher dead-time fraction, e.g. Burst mode=3% efficiency

Decrease readout time by reading out less chips – 1/8 subarray, Chandra ACIS

Filter – Thin -> Medium -> Thick = reduction in c/s for soft spectra – Lose counts

Off-axis angle = use vignetting to reduce count rate and in some cameras the PSF is wider - Lose counts + worse cal

Annular Extraction

Exclude inner 25" where pile-up is worst

EEF=90+/-1% in 1 arcmin circle EEF=20+/-2% between 25 and 60 arcsecs

Problem: Lose fraction of counts Introduce a PSF (encircled energy) energy-dependent, systematic error

Annular Extraction - diagnostics

Annular Extraction – helper tasks

Problem: Lose fraction of counts Introduces a PSF (encircled energy) systematic error

Annular Extraction – PSF fitting

Extract radial profile

Fit radial profile with the known Point Spread Function

Extract events from annulus of 8-40"

https://www.swift.ac.uk/analysis/xrt/pileup.php

Use Pattern 0 events

Ballet 1999 – Using a spectrum with single-pixel events experience minimises spectral pile-up

Frame #1

1 in 9 chance of energy pile-up

Corner: No good event -2 events lost =4

Adjacent: Double event - 2 events lost =4

On Top: One wrong energy event = 1

Pattern 0 – Spectral distortion

Ballet 1999 – Single pixel events experience minimum spectral pile-up

Spectral distortion = 1 - non-piled Events / Piled events

Scaling by number of diagonal events

$$\bar{S}(E) = \bar{S}_{obs}(E) + \frac{\gamma_1}{4\alpha_1} \bar{S}_{dia_p0}(E) - \frac{1}{4} \bar{S}_{dia}(E).$$

Molendi & Sembay 2003

$$\begin{split} & \mathsf{S} = \mathsf{emitted pattern 0 counts(E)} \\ & \mathsf{S}_{\mathsf{obs}} = \mathsf{Observed pattern 0 counts(E)} \\ & \mathsf{S}_{\mathsf{dia_p0}} = \mathsf{Counts(E) obtained by splitting diagonals into two singles} \\ & \mathsf{S}_{\mathsf{dia}} = \mathsf{Counts(E) observed in diagonal events} \\ & \mathsf{\alpha}_1 = \mathsf{fraction of single-pixel events} \\ & \mathsf{y}_1 = \mathsf{probability factor for encountering a diagonal (fn of pattern fractions)} \end{split}$$

Possible if software allows diagonal events to be split into 2 charges. More useful for cameras where the pixel size is small compared to the PSF. e.g. XMM-MOS.

Pile-Up Modelling

From Chandra ABC pile-up guide

Models: **pileup** (xspec,isis,Sherpa) - fast pile-up algorithm from Davis 2001. **jdpileup** (Sherpa) – Gratings, Novak et al. 2008

With variable parameter, α , the grade migration survival probability

Add event model – XMM-Newton

Frame #1

- Start from an event file
- Add one new event into each frame
 - in psf-weighted pixel
 - with a trial PI channel
 - with pattern chosen from p.f. ratio
- Calculate what happens to the event
- Produce a distribution of the output event PIs for each input PI

= event from ODF

Add event at a given energy

Frame #2

- Add one event into each frame
 - in psf-weighted pixel
 - with a trial PI channel
 - with pattern chosen from p.f. ratio
- Calculate what happens to the event
- Produce a distribution of the output event PIs for each input PI

Double event

= event from ODF

Output: Piled-up spectrum for 1.1 keV

Effect of piled-up power-law (1 c/frame) on 1.1 keV Gauss - s+d

Initial power-law spectrum from observation. Add a 1.1 keV event many times.

Initial (black) and output (brown) RMFs

Result written as a new row in RMF

Piled–up RMF for 1.1 keV

Write the piled-up distribution for each energy into the RMF. Produce an RMF which is not normalised to one, hence model the events which produce bad patterns and are lost. Convolution > RMF for trial energy

P.I. channel

Results – simulation

Black-body 40 eV

Works well for sources observed with EPIC-pn in imaging modes with low or moderate pileup.

Koch-Mehrin (2016) - CAL-TN-0214

Results – MKN 421

Koch-Mehrin and Constantino (2016) - CAL-TN-0213-1

Relevant Papers

- Ballet 1999 Stats of pile-up on CCDs, single-pixel events ok.
- Ballet 2001 Effects when pixel size is large compared to PSF
- Davis 2001a Spectral analysis of non-piled up sources
- Davis 2001b Description of Chandra pile-up model
- Molendi & Sembay 2003 triangular events as a diagnostic
- Jethwa et al. 2015 count rate limits for XMM-Newton cameras
- Swift-XRT pile-up https://www.swift.ac.uk/analysis/xrt/pileup.php
- Chandra ABC Guide to Pileup https://cxc.harvard.edu/ciao/download/doc/pileup_abc.pdf
- Tomsick et al. 2004 effect on timing analysis (reduction of noise)
- Yamada et al. 2012 Pile-up effects on Suzaku-XIS
- CAL-TN-0213 and CAL-TN-0214 XMM-Newton technical notes testing of "Added event" model
- Nowak et al. (2008) Chandra gratings pile-up model