X-calibration of NuSTAR and Swift

Kristin K. Madsen (GSFC, NuSTAR) And Andy Beardmore, Kim Page (University of Leicester, Swift)

Cross-calibration: Normal operations

- Require as stable target or strict simultaneity
 - Stable source are extended and faint
- The goldilocks source: 3C 273
 - Hard spectrum:
 - Not too bright for soft instruments
 - Bright enough for hard instruments
 - Fairly stable
 - Low Earth Orbit observatories can't always be simultaneous
 - Fairly featureless
 - Between 1 20 keV a power-law
 - Below soft excess
 - Above curvature

Cross normalization

TABLE 5 CROSS NORMALIZATION CONSTANTS (1-5 KEV)

WT "Good fit" v. Not a "good fit"

TABLE 6 CROSS NORMALIZATION CONSTANTS (3-7 keV & 20-40 keV)

Top/Bottom	LETGS	HETGS	FPMA&FPMB	XIS0	XIS1	XIS3	HXD ^a	XRT	MOS1	MOS2	$_{ m pn}$
FPMA & FPMB	1.09(3)	1.10(7)	1	0.91(4) - 0.97(1)	0.87(4) - 0.94(1)	0.95(4) - 0.97(1)	1.12(6)	1.01(7) - 1.08(4)	1.01(5) - 1.03(2)	0.97(4) - 1.03(2)	0.88(2) - 0.90(4)
Note areas normalization constants from Table 2 and 4. Where a range is given the instrument observed both sources, and the range are directly the lower and higher ratio											

Note - cross-normalization constants from Table 3 and 4. Where a range is given the instrument observed both sources, and the range are directly the ower and higher ratio. ^aEnergy range: 20-40 keV

Cross calibration: The issue

- Relevant for galactic high NH sources taken with
 - NuSTAR
 - Swift WT mode
 - Nicer
 - XMM
 - piled up sources
 - timing mode
 - Pn burst mode

Typical Analysis Cycle

Is it the right thing to do?

- We all do it (me too... sometimes)
- We prune until the fit statistic is good because reviewers will otherwise question the result

• But

- We do not know WHICH instrument is right
- Pruning and chopping off parts of the spectrum will give you a "result", but not necessarily the right one
- We attempt to compare apples to apples, but we are really dealing with apples and oranges...

Dust scattering

Radial profiles

Energy dependency

The problem

XRT WT Profiles

- Example XRT WT mode 1D profiles from low NH source (MAXIJ1820+70, top) and high NH source (MAXIJ1535-571, bottom)
- latter has extended profile (black) compared with expected profile (red dashed), indicative of halo
- xrtmkarf applies EEF correction to ARF for a nominal point source PSF
 - Underestimates corrections for an extended source
 - Gives const factor > 1 when fitting

Pilot project

Source Name	NuSTAR OBSID	Swift OBSID	NH (litt.)	Halo Metric	Swift Count Rate (cts/s)	NuSTAR Count Rate
GRS_1716m249	90301007002	00034924051		0.01	85.67	47.3
4U_1957p11	30402011004	00088692001		0.015	30.67	19.5
V0332p53	80102002008	00081588005		0.03	2.624	41.7
GRO_J1008m57	90001003004	00081425002		0.035	48.15	175.7
GRO_J1008m57	80001001002	00031030018		0.04	63.37	231.3
4U_1901p03	90502307002	00088849001		0.05	43.83	148.3
MAXI_J1535m571	90301013002	00010264003		0.05	215.7	666.2
MAXI_J1535m571	80302309014	00088245004		0.06	484.8	738.7
Swift_J1728d9m3613	90501303002	00887541000		0.08	125.8	236.1
GX_340p0	30302030002	00088018001		0.12	85.75	102.4
Swift_J1658d2m4242	90401307002	00810300002		0.14	5.744	31.4

Summer student project started by Isaiah Curtis, Caltech

Halo metric: NuSTAR

NuSTAR and Swift

Halo and 'discrepancy' correlation

Conclusion and Recommendation

- Conclusion
 - Cross-normalization offsets are expected since the source is 'extended' in WT and the PSF correction assumes a point source
 - Clear correlation of 'discrepancy' with increasing halo size
 - Shape of 'discrepancy' is overall the same and gets worse with larger halos
 - Do we understand it? No...
- Recommendation
 - Allow for large cross-normalization constants between NuSTAR and Swift – that is alright
 - The fit won't be good in the overlapping region, but DON'T attempt to fix it by adding unphysical components
 - Pruning and chopping can make the fit look pretty, but it won't be more correct

