JEREMY J. DRAKE AND THE CXC CALIBRATION GROUP

CHANDRA CALIBRATION: PROBLEMS AND (SOME) SOLUTIONS

CHANDRA CALIBRATION

CHANDRA HARDWARE COMPONENTS

CHANDRA CALIBRATION

CHANDRA HARDWARE COMPONENTS

OUTLINE

ACIS

- External Calibration Source decay
- Temperature-dependent gain
- Contamination
- HRC
 - A-side electronics failure
 - QE decline; gain decline
- Point Spread Function
 - Secular trend or worsening PSF in HRC-S

OUTI INF

- ACIS
 - External Calibration and Reaver and Calibration and Calibratio

 - Temperature-dependent gain
 Contamination
 Contamination
- ► HRC
 - A-side electronatest CALDB.
 - QE decline; gain decline
- Point Spread Function
 - Secular trend or worsening PSF in HRC-S

ADVANCED CCD IMAGING SPECTROMETER (ACIS)

ADVANCED CCD IMAGING SPECTROMETER (ACIS)

GAIN ISSUES: DECAY OF ECS SIGNAL

 Fe55 source with Al+Ti target

ECS

- Al Ka at 1.49 keV
- Ti Kα and Kβ at 4.51
 & 4.93 keV
- Mn Kα and Kβ at 5.90 & 6.49 keV

Half-life $\tau = 2.71 \text{ yr}$

0.6% gain offset applied

0% gain offset applied

0% gain offset applied

Epoch 1 (32 x 32 pixels - three months)

Epochs 79+80 (32 x 128 pixels - six months)

ADJUSTMENTS TO HOW THE ACIS GAIN IS CALIBRATED

- Initially calibrated on 32 x 32 pixel regions every three months
- Calibrated on 64 by 64 regions every three months
- Calibrated on 64 x 64 pixel regions every six months
- Calibrated on 32 x 128 (chipx by chipy) regions every six months

The Future - Cas A(?)

Cas A as a Possible Target for Calibrating the ACIS Gain

A raster scan (3 x 3) of Cas A was competed on I3 in July

Each exposure was 2 ksec.

0.5-2 keV band images of Cas A grid

CAS A AS A GAIN CALIBRATION SOURCE

Cas A - Si XIII

CAS A AS A GAIN CALIBRATION SOURCE

ACIS TEMPERATURE-DEPENDENT CALIBRATION

Havey et al (2019)

ACIS TEMPERATURE-DEPENDENT CALIBRATION

- Charge Transfer Inefficiency affects QE (grade migration), energy resolution, gain
- Important for ACIS-I, less so for ACIS-S

Fitted Line widths vs Temperature on I3

Energy →

Color scale corresponds to line width

S3-aimpoint Spectral Resolution vs. Temperature

The Calibration team has given approval for S3 only observations up to -109C

13-aimpoint Spectral Resolution vs. Temperature

The thermal limit for FI observations remains at -112C

FILTER CONTAMINATION LAYER

HIGH RESOLUTION CAMERA

ANOMALY OVERVIEW

August 24, 2020 anomalous power configuration from HRC

- ▶ +15 V and -15 V power showed anomalous values
- Increased noise on +24 V power
- Increased Central Electronics A box temperature
- Unreliable secondary science data
- Instrument otherwise as expected

Response

- Spacecraft and ACIS teams reported no anomalies
- Instrument team determined problem within HRC electronics and recommended immediate power-off of HRC
- ► HRC radiation monitoring capability protects both SIs → Both Science Instruments (SIs) safed and HRC powered down

HARDWARE OVERVIEW

TIMELINE AND DECISION POINTS

- Root cause isolated to hardware within the HRC CEA-A
- Recovery has been incremental, with soak periods between steps, to ensure each function is stable before proceeding
- Two successful check-out observations a slow manual power ramp-up and a nominal ramp-up - for each detector
- Return to nominal HRC science planned for November 23 weekly schedule

CURRENT HRC POWER CONFIGURATION

Both detectors are now back on-line and performing nominally (phew!)

Thanks to D. Patnaud

TEST OF A B SWITCHOVER: OTH ORDER DITHER

Capella LETG+HRC-S on 2020-11-10

TEST OF A B SWITCHOVER: OTH ORDER DITHER

Capella LETG+HRC-S on 2020-11-10

POSSIBLE ISSUES FROM A B SWITCHOVER: DISPERSION, QE

Capella LETG+HRC-S on 2020-11-10

POSSIBLE ISSUES FROM A B SWITCHOVER: DISPERSION, QE

Capella LETG+HRC-S on 2020-11-10

POSSIBLE ISSUES FROM A B SWITCHOVER: DISPERSION, QE

Capella LETG+HRC-S on 2020-11-10

HIGH RESOLUTION CAMERA

POSSIBLE ISSUES FROM A B SWITCHOVER: GAIN

Capella LETG+HRC-S on 2020-11-10

HIGH RESOLUTION CAMERA

POSSIBLE ISSUES FROM A B SWITCHOVER: GAIN

Median gain 9% higher than Side A

Broader distribution

 Background filter will remove > 1% of events at some wavelengths

Capella LETG+HRC-S on 2020-11-10

HZ 43: HRC/LETG Count Rates

HZ 43: HRC/LETG Ratios to Predicted

HZ43 LETG+HRC-S Empirical QEU Corrections

Corrections expressed relative to 2.35%/yr grey decline

HRC-S Gain Decline

Gain-related problems for PI-base background filtering

- +ve order long wavelength source signal now same PI as lowest PI background events
- PI-base bg filtering removes significant signal

Gain-related problems for PI-base background filtering

- +ve order long wavelength source signal now same PI as lowest Pl background events
- PI-base bg filtering removes significant signal

POINT SPREAD FUNCTION

POINT SPREAD FUNCTION

PSF MONITORING: STEADY SMALL INCREASE OF PSF ON HRC-I,S

PSF MONITORING: STEADY SMALL INCREASE OF PSF ON HRC-I,S

HRC PSF

- The HRC-I and HRC-S PSFs are steadily increasing in width; for HRC-S ~10% larger now than at the start of the mission
- Cause: uncertain, but possibly: HRMA temperature; gain decline
- Degradation is possibly related to decline in gain
 - Intrinsic detector psf?
 - Degap drift?
 - No evidence of a change in ACIS (but MUCH more difficult to see/measure)

SUMMARY

- Chandra calibration challenges are as a result of aging and decline of satellite thermal control and instrument performance and accumulation of contamination on ACIS
- The ACIS ECS is fading to beyond practical use for regular gain calibration. Cas A appears to provide a useful substitute
- As Chandra warms, ACIS performance is adversely affected and
- ACIS contamination model is being regularly updated; the contamination buildup rate is not slowing
- HRC-S PSF is slowly broadening; this behavior is not currently understood but might be HRMA temperature and/or detector gain
- Continuing HRC-S QE secular changes are being calibrated (HV increase on HRC-S likey in 2021).