

An Effective Calibration Method for GRID: a Student-driven NanoSat Constellation for GRB Observation

<u>Qidong Wang</u>^{1,2*}, Longhao Li^{1,2*}, Zirui Yang^{1,2}, Xutao Zheng^{1,2}, Xiaofan Pan^{1,2},Zhonghai Wang³, Rong Zhou³, Lin Lin⁴, Yuanyuan Liu⁴,Jianyong Jiang⁴, Binbin Zhang⁵, Hua Feng⁶, Ming Zeng^{1,2} **On behalf of GRID collaboration**

¹Department of Engineering Physics, Tsinghua University, Beijing, China
²Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China
³College of Physics, Sichuan University, Chengdu, China
⁴School of Physics and Astronomy, Beijing Normal University, Beijing, China
⁵School of Astrophysics, Nanjing University, Nanjing, China
⁶Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, Beijing, China
*wqd23@mails.tsinghua.edu.cn

Overview of GRID

Concepts

Gamma Ray Integrated Detectors (GRID)

- Detection of GRBs associated with future NS-NS mergers and other gamma ray transients.
- NanoSats scattered in low Earth orbits^[1], aiming at full-time all-sky monitoring and localizing.
- Compact gamma ray detectors

NASA: Gamma-Ray Burst(GRB) and its lightcurve

Time in Seconds

Joint, multi-messenger detection of GW170817 and GRB 170817A^[2]

GRID-02 installed on the NanoSat

Compact Detector Design

Scintillator size	3.8×3.8×1cm³ For single channel
Density	6.6g/cm ³
Light Yield	54,000ph/MeV
Decay Time	150ns
Radiation Hardness	10 ⁷ rad
Deliquescence	no

Specifications of SiPM

Breakdown Voltage	24.2~24.7V
OverVoltage (V _{ov})	1~6V
Gain	6.3e6@+6V V _{ov}
Dark Count Rate	150 kHz/mm² @+6V V _{ov}

GRID type-A detector design^[3]

GRID SiPM* array board *Silicon photomultiplier SensL MicroFJ-60035

GAGG:Ce* scintillator

*Cerium-doped Gadolinium Aluminum Gallium Garnet

IGRID Constellation

GRID-ID	Launch Date	Ownership	Spacetrack catalog No.	Control Unit	Dead time	Power consumptio n
GRID-01	2018/10/29	THU	43663	MCU	~20us	~2W
GRID-02	2020/11/06	THU	46838	MCU	~15us	~2W
GRID-03B	2022/03/11	THU	51830	FPGA	~5us	~7W
GRID-04	2022/03/11	THU	51830	MCU	~15us	~2W
GRID-05B	2023/01/15	THU	55254	FPGA	~5us	~7W
GRID-06B	2023/01/15	NJU&SCU	55252	FPGA	~5us	~7W
GRID-07	2023/01/15	BNU	55261	MCU	~15us	~2W
GRID-08B	2023/01/15	NJU&SCU	55261	FPGA	~5us	~7W
GRID-10B	2024/06/22	THU&SCU	60088	FPGA	~5us	~7W
GRID-11B	2024/11/11	THU&SCU	61897	FPGA	~5us	~7W
GRID-12B	2024/11/27	THU	62112	FPGA	~5us	~7W
GRID-13B	2024/11/27	THU	62111	FPGA	~5us	~7W

BNU: Beijing Normal University SCU: Sichuan University NJU: Nanjing University THU: Tsinghua University

The Student Team

The 2016 student team

The 2025 student team

Observation Results

*General Coordinate Network

Some GCN* Circulars Submitted by GRID

No.	GRID-ID	Trigger time	GRB	Circular
01	03B	2023-06-25T18:23:57	230625A	34149
02	07	2023-06-28T17:36:23	230628C	34171
03	03B/04/07	2023-07-03T22:53:07	230703A	34188
04	03B	2023-08-18T23:27:30	230818A	34523
05	03B/04	2023-08-27T18:17:41	230827A	34642
06	03B/04/07	2023-10-04T18:56:58	231004A	34868
07	04	2023-10-20T18:56:58	231020A	34903
08	07	2023-12-05T02:25:11	231205A	35402
09	03B/04	2023-12-05T16:43:49	231205B	35403
10	04	2023-12-05T09:47:18	231215A	35413
11	04	2023-12-30T01:29:08	231230A	35559
12	03B/04	2024-02-29T14:07:08	240229A	35904
13	03B	2024-03-06T06:45:48	240306A	35930

GRID Catalog is in progress

[4] Wang, X. I., 2021

7

On Ground Calibration

Calibration Campaign

- Energy response
 - X-ray beam(20-120 keV)
 - NIM. in Beijing
 - Radioactive source(59-1332keV)
- Angular response
 - Measurements are obtained from 0°to 360°
 - angle cadence of 15°
- Temperature Bias dependency
 - 27V to 29V
 - -20 °C to 40 °C

Constant

chamber

Energy Response

- Energy-Channel
 - quadratic function
- Energy resolution
 - resolution = $\frac{\sqrt{a \cdot E^2 + b \cdot E + c}}{E}$
- Segmented fitting
 - K-edge of Gd: 50.2 keV
 - Light yield drop of GAGG
- Consistency across detectors

Angular Response

- The number of direction is limited
- Geant4 simulation
- The experimental data are in good agreement with the simulation
 - Am241, Cs137
- Angular response will be generated for the target direction when a GRB is found

Temp Bias Dependency

- Gain variation
 - Bias
 - Temperature
- Non-negligible change
 - ~10% gain variation
 @ 10°C fluctuation
 - ~20% gain variation
 @ 0.5V fluctuation

Energy Reconstruction

Operating Strategy

- G_{det} is sensitive to both temperature and bias voltage
- Operating Strategy:
 - Monitoring the leakage current
 - Radiation damage
 - Temperature
 - Stabilize the bias voltage
 - with PID algorithm
 - Record temperature real time
 - temperature monitoring chip near the SiPM
 - reconstruct gain of each photon event
 - Dedicated bias & recorded temperature
 - Calibration result

2D Temp Bias Response

- Gain model for entire detector
- $G_{\text{det}}(T, V_{\text{b}}) = LY_{\text{GAGG}} \cdot \text{PDE} \cdot G_{\text{SiPM}} \cdot G_{\text{elec}}$ $= G_0 \cdot (V_{\text{b}} k \cdot T V_{\text{BD0}})^2 \cdot (-T^2 + b_{\text{T}} \cdot T + c_{\text{T}})$
 - With on ground calibration data
- Correct signal amplitude
 - To reference temperature, bias
 - 28.5V, 20°C
 - photon by photon

In Orbit Calibration

Long-term gain shift
 511 keV correct
 <10% before and after rocket launch

• Long term around 1%

Long Term Monitoring of SiPM

SiPM Monitoring

- GRID circuit design
 - Temp bias record in real time
 - IV scan for breakdown voltage
 - Charge Injection
 - with and without bias voltage
 - Total noise including
 - SIPM dark count noise
 - electronics noise
- Accumulated data more than one year
 - ~900 days for GRID-03B

Leakage Current

- Keeps increasing due to radiation damage
- Linear growth
 - Proportional to accumulated dose

Charge Injection

20

SiPM IV Scan

- Breakdown voltage
 - Not affected by radiation damage

Leakage Current Growth in Long Term

- Linear growth
 - at early time
- Saturation in long term
 - Annealing effect

MicroFJ-60035-TSV(6mm×6mm)@28V 21°C

Conclusion

- GRID is a NanoSat mission for GRB observation, with both scientific and education purpose, with considerable contribution from undergraduate students.
- 12 GRID detectors have been successfully launched, and some scientific results have been published.
- An effective calibration method has been applied to GRID detectors and it's promising for SiPM-based detector on NanoSat.
- GRID provides long-term in-orbit monitoring of SiPM, which is beneficial to its space application.
- GRID is a collaboration with open hardware and open data, welcome to join!

The GRID Collaboration

24

Reference

- [1] J. Wen et al., "GRID: a student project to monitor the transient gamma-ray sky in the multimessenger astronomy era," Experimental Astronomy, vol. 48, no. 1, pp. 77–95, Aug. 2019, doi: 10.1007/s10686-019-09636-w.
- [2] B. P. Abbott et al., "Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A," The Astrophysical Journal, vol. 848, no. 2, p. L13, Oct. 2017, doi:10.3847/2041-8213/aa920c.
- [3] J.-X. Wen et al., "Compact CubeSat Gamma-ray detector for GRID mission," Nuclear Science and Techniques, vol. 32, no. 9, Sep. 2021, doi: 10.1007/s41365-021-00937-4.
- [4] X. I. Wang et al., "GRB 210121A: A Typical Fireball Burst Detected by Two Small Missions," The Astrophysical Journal, vol. 922, no. 2, p. 237, Dec. 2021, doi: 10.3847/1538-4357/ac29bd.
- [5] H. Gao et al., "On-ground calibrations of the GRID-02 gamma-ray detector," Experimental Astronomy, vol. 53, no. 1, pp. 103–116, Dec. 2021, doi: 10.1007/s10686-021-09819-4.
- [6] Q. Liu et al., "Monte Carlo simulation of angular response of GRID detectors for GRID mission," Journal of Instrumentation, vol. 20, no. 03, pp. P03017–P03017, Mar. 2025, doi: 10.1088/1748-0221/20/03/p03017.
- [7] X. Zheng et al., "In-orbit radiation damage characterization of SiPMs in the GRID-02 CubeSat detector," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1044, p. 167510, Sep. 2022, doi: 10.1016/j.nima.2022.167510.

Thanks for listening!