

Thermal SNRs as Standard Candles

CXC

1

- flux is constant in time (mostly true), need to exclude SNRs with central source
- typically have strong lines at energies of interest
- extended sources so pileup effects are reduced

Candidate Thermal SNRs Considered at IACHEC

- 1) Cas-A
- 2) N132D
- **3)** E0102

Cas A: Chandra Three-color image

Red: 0.5-1.5 keV Green: 1.5-2.5 keV Blue: 4.0-6.0 keV 6 X 6 arcmin Significant spectral variations throughout the remnant Emission in small regions is timevariable Weak central source Very bright, pileup in the brightest filaments

with Chandra

IACHEC May 2008

Paul Plucinsky

Cas A: OBSID 114, Representative Spectrum from one region

N132D: Chandra Three-color image

Red: 0.3-0.5 keV Green: 0.5-0.75 keV Blue: 0.75-7.0 keV 2.0 X 2.5 arcmin Complicated morphology Significant spectral variations as a function of position Significant Fe emission which

complicates spectrum below 1.2 keV

Paul Plucinsky

1.2 X 1.2 arcmin

Least complicated morphology

S3 Summed Data ~100 ks

Three Color Image

Red: 0.2-75 keV, Green: 0.8-1.1 keV, Blue: 1.1-2.0 keV

Paul Plucinsky

Paul Plucinsky

0

an et tallet

Chandra X-Ray Observatory

Advantages of E0102 compared to Cas-A and N132D

- E0102: small size minimizes PSF and off-axis angles effects, degrades resolving power of the gratings the least
 - simple spectrum well-characterized by gratings
 - O, Ne, Mg emission provides line complexes at energies not covered by on-board sources
 - morphology most uniform of the three
- Cas-A: larger size PSF and off-axis angles effects more important, resolving power of
 N132D: the gratings significantly degraded by source extent
 - complex spectrum lots of Fe which complicates spectrum
 - O, Ne, Mg lines provides line complexes at energies not covered by on-board sources

Disadvantages of E0102

- Chandra brighter regions have some pileup
- Suzaku nearby XRB can contaminate spectrum

Paul Plucinsky

Thermal SNR Working Group

XMM-Newton RGS	Andy Pollock (ESAC)
Chandra HETG	Dan Dewey (MIT)
XMM-Newton MOS	Steve Sembay (Leicester)
XMM-Newton pn	Frank Haberl (MPE)
Chandra ACIS	Joe DePasquale, Paul Plucinsky (SAO)
Suzaku XIS	Eric Miller (MIT)
Swift XRT	Andrew Beardmore, Olivier Godet (Leicester)
Models	Randall Smith (JHU/GSFC)

Given the previous arguments we have focussed our efforts exclusively on E0102 since the last IACHEC meeting

Paul Plucinsky

Thermal SNR Working Group Process

8 telecons since July 2007, twiki page (DePasquale) set up to disseminate information:

cxc.harvard.edu/twiki/bin/view.cgi/SnrE0102/WebHome

SnrE0102		Edit Attach Printable
Log In or Register	You are here: TWiki > SnrE0102 Web > WebHome	r20 - 15 May 2008 - 15:30:21 - JoeDePasqua
 SnrE0102 Web Create New Topic Index Search Changes Notifications Statistics Preferences Webs AcisCal AcisOps CXCRadiation HrcCal Main Sandbox SnrE0102 Tracer 	Welcome to the SNR 1E 0102-7219 As an extension of the International Astronomical Consortium for High Energy of cross-calibration efforts between the XMM and Chandra calibration teams using • Action items from the May 2007 IACHEC meeting. • Action items from the May 2007 IACHEC meeting. • The Definitive E0102 Calibration Model • The Absorption Model • The NoLine Model • Comparison with Data • The E0102 Model - OBSOLETE • Meeting Notes • Open Actions	WED Calibration <u>IACHEC</u> - this page is designed to facilitate g the wonderful SNR "E0102".
	The Definitive E0102 Calibration Model	
	Please post new models to this page	
	The Absorption Model	
	 Paul Plucinsky's <u>AbsorptionModel</u> absorption model, including a two-cordeveloped. NEW as of April 27, 2008 Two component absorption model using Wilm 	mponent absorption model and a description of how it was s absorption model:

Paul Plucinsky

Construction of the Definitive E0102 Model

<u>Absorption:</u> • adopt Wilms et al. 2000 model as tbabs in XSPEC

• adopt a two-component absorption, Galactic and SMC, Galactic component fixed at 5.36×10^{20} cm⁻² with Wilms abundances, SMC component is free to vary with abundances set to Russell & Dopita 1992 SMC abundances

<u>Continuum:</u> • adopt APEC no-line continuum model

• adopt a two-component continuum, a relatively low-temperature component and a higher temperature component

Line Emission: • use Gaussians for the lines, 30-40 lines, currently under discussion

- freeze energies to known values and set widths to zero
- constrain normalizations of lines of same ionization state to values determined by the RGS and HETG

This is NOT an astrophysical model, it is an empirical model !!!!

Paul Plucinsky

How to Constrain the Model Components

- 1) RGS and HETG constrain SMC $N_{\rm H}$ and normalization and temperature of low-temperature APEC no-line continuum
- 2) MOS, pn, & XIS determine normalization and temperature of high-temperature APEC no-line continuum
- 3) RGS and HETG determine line fluxes from 0.3-2.0 keV
- 4) MOS and pn determine line fluxes for lines above 2.0 keV
- 5) ALL instruments fit with the resulting model
- 6) Iterate to agree on the definitive model

My goal for this meeting would be to complete steps 1-4 and start iterating on step 5.

How Can the Gratings Constrain the Line Parameters ?

Phil

How Can the Gratings Constrain the Line Parameters ?

RGS spectra 22-38 A from Pollock (ESAC)

Paul Plucinsky

PIA

How Can the Gratings Constrain the Line Parameters ?

RGS spectra 13-25 A from Pollock (ESAC)

121

How Can the Gratings Constrain the Line Parameters ?

RGS spectra 6-14 A from Pollock (ESAC)

(e)

Compare RGS model to pn data, Haberl (MPE)

data and folded model

Paul Plucinsky

C. C.

IACHEC May 2008

CXC

There are significant spectral variations within E0102, DePasquale (SAO)

Astrophysics Will become More Important as We Refine the Model

E0102 IS changing with time!!!!, DePasquale (SAO)

Paul Plucinsky

Conclusions

- we are close to a "definitive" spectral model for E0102
- we plan to quote agreement amongst the various instruments at OVII (560-574 eV), OVIII (654 eV), Ne IX (905-922 eV) and Ne X (1022 ev)
- we expect to write an SPIE paper immediately preceding this meeting for the June SPIE conference