Image the all-sky mission from the International Space

T. Mihara (RIKEN) On behalf of MAXI Collaboration

Matsuoka 2009 PASJ submitted.

Sugizaki 2009 IEEE submitted.

MAXI mission on ISS

- The first astronomical mission on ISS for all-sky Xray monitor
- attached on JEM (Japanese Experimental Module, KIBO)
 EF (Exposed Facility)
- Jaunch: Space Shuttle

X-ray Slit Cameras on MAX¹ Pril 28, 2009 Miha Pavload

All-Sky Scan with Slit Cameras

Scan with SS rotation

Field of Views

MAXI scans almost the entire (90%) sky twice in every ISS orbital period (~ 90 minutes).

Effective area

GSC-H and Z added. In one-orbit.

- Effective area
 6.17cm²/source/PC
- (2 Hcamera + 2 Zcamera) * 2 FOV * cos22.5 * 0.5
 - 22.8cm²/source/orbi
- Dwell time 45s
 *15orbits *1 yr *0.7
 = 3930 cm² ks
- Corresponds to PCA
 (2400cm²) 1 6 ks

Scientific Objectives

- Detection/monitor of transient X-ray sources in the whole sky
 - Galactic transient
 - X-ray binaries (Novae, QPOs, ..), AXPs, SGRs, flare stars, ...
 - AGNs, GRBs, Supernova breakouts,...
- Rapid nova alerts
 - GRBs, new sources, and outbursts of known sources
- Complete all-sky catalog of X-ray sources
 - 0.5—30 keV, down to 0.2 mCrab in 2 years
 - Census of X-ray sources
- Large scale mapping of diffuse/unresolved X-ray Sky
 - Galactic ridge/loop structures with oxygen (and other) lines
 - Cosmic X-ray background fluctuations and anisotropy

Simulated Sky Images by MAXI

~ 1000 objects and Diffuse hot sources!

GSC 2-30keV

00000 20000

Detection limit (5 σ) of GSC by simulation

HEAO A-1 equivalent catalog every month!

J1859 • GRS1915

9kpc BHC discovery 4U 1957+11 Before MAXI : ~1/year With MAXI : ~1/month

• GS2023

Cyg X-1 GS2000 GRO J0422 J1118 GRS1716 A0620 V4641 GRO J1655 J1650

GRS1009

J1650 GS1124 J1550 J1748 GRS1716 GRS1739 J1755 IGR J1746 J1719 GRS1758

GX339-4

4U1<u>5</u>43

Statistics -> binary evolution

X-ray detectors of MAXI

Gas Slit Camera (GSC)

collimator

	GSC	SSC
detector	Xe Prop. Counter	CCD 16chips x 2
Energy Band	12 cam	cameras
Energy resol.	2 - 30 keV	0.5 - 12 keV
Time resol.	15.7% at 8.0 ke	eV 150 eV at 5.9keV
FOV	50 μsec	6 sec
PSF FWHM	1.5 x 160 deg	1.5 x 80 deg
sensitivity	1.5 deg	1.5 deg

April 28, 2009 Miha

Ground cal. : GSC properties

April 28, 2009 Miha

Ground cal : collimator transmission

- Effective area: ~90% of the designed.
- Measured by Cu beam.
- 3 scan paths in FOV.

(c) φ=30°, CCD=6

PSF for incident angles

GSC: Energy calibration

Very similar to RXTE/PCA

⁵⁵Fe isotope: Δ PH/PH~1% in 1 hour -> gain history

Cas A: 60 days simulation

All anodes and cameras Added.

 $E = 6.57 \pm 0.07 \text{ keV}$

Flux, spectral slope : crab

- 1day
 simulation
 Γ=2.10,
 norm=10
- All cameras added
- Γ=2.14±0.03
- Norm=10.5±0. 6

Timing of GSC

• Timing method

• Timing will be calibrated by Crab pulsar, ms pulsar, binary X-ray pulsars.

Simulation of MAXI-GSC light curve for 3C273

- 5 mCrab variable source
- PSD slope = 2.0, Tbrk = $100_{IR} day \int_{GeV TeV} day$
- Flux calibration with Blazars

April 28, 2009 Miha

SSC Ground cal: response for monochromatic X-ray

 10^{3}

10

Mn

- Fluorescent lines from Al, Si, Cl, Mn, Ti, Fe, Ni, Zn.
- Based on the Suzaku XIS response 10
- 30 parameters with energy dependence for each CCD.

SSC Ground cal: efficiency

- efficiency of CCD: designed values
- depletion layer: measured values
- Al (light blocking): 0.2 um
- Si (electrode) : um
- SiO2(isolation layer): 0.5
 unBinning is 64
 1624 coxets)
- Charge injection is ON
- Time resolution is 5.4 s

SSC In orbit cal. : isotope

Calibrate CTI by

- Isotopes:
 ⁵⁵Fe for 3(4) C(
- X-ray sources:
 Cas A (Si, S)
 - Cygnus loop (C
- Instrumental:
 - Cu from collimator

Irradiates 2 of the 16 CCDs Count rate $\sim 10^4$ c/week

SSC in orbit cal: X-ray sources

- Cygnus Loop
 - diameter : $\sim 3^{\circ}$
 - Strong O, Ne.
 - OVII : 559 ± 4 eV
 - NeIX: 896 ± 1 eV
- Cas A
 - diameter : \sim 6 arcmin
 - Srtong Si, S, Fe lines
 - Well known energies with Suzaku, Chandra, XMM
 - Si-K α : 1851 ± 3 eV
 - Fe-Kα : 6630 ± 20 eV

Schedule

- ✓ 2007/10 Final integration Completed
 - 2008/9 Final pre-flight tests in Japan
- ✓ 2008/10 Transport to KSC
 - 2008/11 Final pre-flight test at KSC
 - 2009/1 Mounted on Exposed Palette
 - <u>2009/6 Launch with</u> Space Shuttle
- Initial Phase, In-orbit calibrations
- O L+3 months Start releasing

Summary

- MAXI is the first astronomical mission carried on ISS to monitor all-sky X-ray image.
- will be launched in June 13, 2009 by Space Shuttle, Endeavour.
- Effective area is small, but all the sources are observed "all the time", reaching equivalent to 1ks obs. with PCA in 1 year.
- Any bright sources can be used as crosscalibration.
- After 3 months of the start of the observation MAXI,
 - Nova alerts will start,

- Regular science products of pre-selection Matsuoka 2009 PASJ submitted. Sugizaki 2009 IEEE submitted.