

Paul Plucinsky on behalf of Randall Smith on behalf of the ESA-JAXA-NASA IXO team

Basic Facts about IXO

- Merger of ESA/JAXA XEUS and NASA's Constellation-X missions
- Part of US Astro2010 Decadal
 Review and ESA Cosmic Visions
- Guest Observatory, with time allocation done as with Hubble, Chandra, Spitzer
- Launch planned 2020

Basic Facts About IXO

- Flight Mirror Assembly (FMA)
 - Highly nested grazing incidence optics
 - 5" PSF (HEW)
- Instruments
 - X-ray Micro-calorimeter Spectrometer (XMS)
 - X-ray Grating Spectrometer (XGS)
 - Wide Field Imager (WFI) and Hard X-ray Imager (HXI)
 - X-ray Polarimeter (X-POL)
 - High Time Resolution Spectrometer (HTRS)
- XMS, WFI/HXI, XPOL and HTRS observe one at a time
 - XGS always operational

Basic Facts about IXO

Effective area a factor of >10x of current missions Spectroscopy capabilities >100x of current missions

X-ray Mirror Baseline

Key requirements:

- Effective areas:
- ~3 m² @ 1 keV
- ~1 m² @ 6 keV
- Angular Resolution <= 5 arc sec</p>
- Single segmented optic with design optimized to minimize mass and maximize the collecting area ~3.2m diameter

Glass

- Two parallel technology approaches being pursued
 - Silicon micro-pore optics ESA
 - Slumped glass NASA

Optics Technologies: Resolution and Mass

IXO Options

International X-ray Observatory [XO]

FMA Module Layout

- Module size constrained by glass size (<35 cm)
- 5022 segments in 24 outer modules 4248 segments in 24 middle modules 2538 segments in 12 inner modules

Focal Plane Layout (Aft View)

IXO Calibration Challenges

- Flight Mirror Assembly (FMA)
 - Ground calibration of modules must be time-efficient, calibration time cannot simply scale with collecting area
 - Which facility could accommodate the integrated FMA ?
- Instruments
 - XMS, gain stability & background from ASTRO-H, but a much larger number of pixels and different orbit for IXO
 - XGS, highest resolution X-ray spectrometer ever flown, pushes the limits of our knowledge of atomic physics and astrophysics
 - WFI, uniformity across the FOV
 - HXI, build on *Suzaku* and ASTRO-H experience, but will the technology be significantly different such that previous experience is less applicable
 - X-POL, how does one calibrate a polarimeter on-orbit ?
 - HTRS, build on RXTE experience
- Programmatics
 - As we discussed at the Iceland IACHEC, ground & flight calibration must be a priority of the agencies ESA/JAXA/NASA

IXO: A Future Great Observatory

X-ray

Optical

The two order of magnitude increase in capability of IXO is well matched to that of other large facilities planned for the 2010-2020 decade

Key Performance Requirements

Parameter	Value			Science Driver	Inst.
Mirror Effective Area	3 m ² @ 1.25 keV 0.65 m ² @ 6 keV 150 cm ² @ 30 keV			Black Hole Evolution Strong Gravity Strong Gravity	
Spectral Resolution (FWHM), FOV, bandpass	$\Delta E = 2.5 \text{ eV}$ $\Delta E = 10 \text{ eV}$ $\Delta E = 150 \text{ eV}$ $E/\Delta E = 3000$	2 arcmin 5 arcmin 18 arcmin point src	0.3– 7 keV 0.3–10 keV 0.1–15 keV 0.3– 1 keV	Galaxy Cluster Evolution Cosmic Feedback Black Hole Evolution Cosmic Web	XMS XMS WFI/HXI XGS
Angular Resolution	5 arcsec HPD 5 arcsec HPD 30 arcsec HPD		0.3– 7 keV 0.1– 7 keV 7–40 keV	Cosmic Feedback Black Hole Evolution Strong Gravity	XMS WFI/HXI WFI/HXI
Count Rate	10 ⁶ cps with <10% deadtime			Neutron Star Eq. of State	HTRS
Polarimetry	1% MDP, 100 ksec, 5×10^{-12} cgs (2-6 keV)			Strong Gravity	XPOL

