Energy Calibration Status of Swift/BAT

T. Sakamoto on behalf of BAT team

Update on BAT energy response Cross-calibration work using GRBs: Konus-Wind, Suzaku/WAM, and Swift/BAT Gain change in BAT (work in progress)

Burst Alert Telescope (BAT)

Update on BAT energy response

Fix in high-energy (>80 keV) part of the response

Previous energy response

Residuals (data/model) vs. Energy

Systematic error (batphasyserr)

Two corrections in DRMs:

- 1. Correction at < 20 keV (Correct for unaccounted passive absorption in BAT field of view),
- 2. Correction at > 80 keV (adjustment in effective area).

2009. 4. 27.

Modification in μτ measurement (G. Sato)

Effect of $(\mu\tau)_{hole}$

- MC simulation taking into account the material of the packaging

Large excess due to the scattering of the source packaging

x 1.7 $\mu\tau$ is needed to reproduce the ground calibration data

2009. 4. 27.

4th IACHEC Me

Fix in response and systematic error

Fix in BAT energy response

- Multiplied by 1.7 of current $\mu\tau$ table (CALDB)
- Major update in systematic error vectors > 80 keV (CALDB)
 - Factor of 2-3 smaller at high energies!

Swi

2009. 4. 27.

Crab re-analysis

High energy part (>80 keV) of the BAT energy response has been updated by increasing the values of μτ.
 No correction at the high energy part anymore.
 Systematic error vector >80 keV has been reduced.
 This new response is available at the standard BAT ftools/CALDB.

Cross-calibration using GRBs:

Konus-Wind, Suzaku/WAM and Swift/BAT

Konus-Wind, Suzaku/WAM and Swift/BAT

Konus-Wind

- L1 point (low background)
- Two NaI(TI): 13 cm (d) x 7.5 cm (h)
- 10-750 keV and 0.2-10 MeV (63 channels)
- Time variable spectral intervals (64 ms- 8.192 s)
- >20 keV is calibrated

Suzaku-WAM

- BGO (400 cm²@1 MeV)
- 4 detectors
- 50 keV 5 MeV (55 channels)
- 0.5 s spectra (1 s spectra)
- >120 keV is calibrated

Swift-BAT

Swi

2009. 4. 27.

Empirical spectral models of GRBs

Example: GRB 060117

2009. 4. 27.

Example: GRB 060117

2009. 4. 27.

Example: GRR 060117

2009. 4. 27.

4th IACHEC Meeting

Swift

Example: GRB 060117

2009. 4. 27.

Example: GRR 060117

takanori 16-Dec-2008 14:35

2009.4.27.

Spectral parameters

Normalization factor

WAM constant factor agrees to KW within 20% range (0.8-1.2).
BAT constant factor is systematically smaller than KW by 10-20%.

Summary

Cross-calibration work among Konus-Wind, Suzaku/WAM, and Swift/BAT has been performed using the simultaneously observed GRBs in 2005-2007.

- Systematically softer (steeper) low energy photon index α and higher E_{peak} energy are obtained based on the joint fits comparing to those of the KW fit.
- Constant factor of WAM based on the joint fits is consistent with the KW fits within 10-20% range. However, the constant factor of BAT is systematically smaller by 10-20%.

Gain change in BAT (work in progress)

²⁴¹Am 59.5 keV line

2005 doy 1-10

2006 doy 152-161

- BAT measurement of 59.5 keV line has been shifted for 1-2 keV in ~1.5 years.

Long term trend of 59.5 keV line

²⁴¹Am spectrum: array averaged

- 1.5 (early) - 0.4 (current) keV/yr shift in 59.5 keV line (array averaged).

- The pulse width seems getting wider.

Summary

Peak shift of 59.5 keV line to low energy has been seen (²⁴¹Am source).
 Shift rate is 1.5 keV/yr (early) - 0.4 keV/yr (current).

We believe the shift is due to intrinsic properties of CZT detector rather than electronics (still investigating...).

We are working on updating the software/CALDB to correct this effect.

