

Herman L. Marshall (MIT Kavli Institute)

Previous Presentations

- IACHEC1: Goal is to avoid two problems
 - A: claims of new physics due to calibration errors
 - B: features ignored due to presumed systematics
- IACHEC2: Two new tools
 - Multiple adjustment functions (HLM) bad
 - Vary instrument models (Drake et al.) good
- IACHEC3: Update
 - The Dewey's "science relevance" χ^2/ν adjustment
 - More of Drake's method

OLD Adjustment Method

Method proposed: Use penalty function

Minimize
$$\Lambda = \sum_j A_j^2 + \exp(\frac{(\chi_{\nu j}^2 - 1)^2}{\nu_j})$$

$$\text{ where } \chi^2_{n\nu} = \frac{1}{\nu_n} \sum_{i=1}^{I_n} \frac{[y_{in} - f(x_{in}; \vec{\alpha})(1 + \sum_j A_{nj}g(x_{in}; \vec{\beta_j}))]^2}{s_{in}^2}$$

Problems:

- Model is "ugly"

Solutions?

- Different basis functions
- Evolve toward Drake et al. method

Example: Mk 421 LETGS

- Gaussian normalizations computed
- Not consistent between LETGS observations

Example: Mk 421 LETGS

Example: Mk 421 LETGS

NEW Adjustment Method

- Method: spline amplitudes
 - Define correction grid (wavelength, energy, ...)
 - Correction amplitudes defined on grid (init = 0)
 - Adjust A_{eff} by spline through amplitudes
 - Creates a smooth adjustment with arbitrary shape
- Method succeeds at a "reasonable" level
- Future:
 - Examine distribution of amplitudes
 - Centroids of amplitudes --> fix EA
 - Standard deviations --> characterization of errors

Mk 421 LETGS again

Normalizations

Spline amplitudes ~ Gaussian norms

Results at a Glance

Apply to new data

Apply to new data

Apply to new data

NEW Adjustment Method

- Method: spline amplitudes
 - Define correction grid (wavelength, energy, ...)
 - Correction amplitudes defined on grid (init = 0)
 - Adjust Aeff by spline through amplitudes
 - Creates a smooth adjustment with arbitrary shape
- Method succeeds at a "reasonable" level
- Future:
 - Examine distribution of amplitudes
 - Centroids of amplitudes --> fix EA
 - Standard deviations --> characterization of errors

For further discussion...

For further discussion...

