

IACHEC: Thermal Supernova Remnant Working Group

Paul Plucinsky on behalf of the IACHEC Thermal SNR Working Group

1

Paul Plucinsky

IACHEC April 2010

Thermal SNR Working Group

One of the "Standard candle" working groups.						
This presentation is a	a summary report of this group's work:					
XMM-Newton RGS	Andy Pollock (ESAC)					
Chandra HETG	Dan Dewey (MIT)					
XMM-Newton MOS	Steve Sembay (Leicester)					
XMM-Newton pn	Frank Haberl (MPE)					
Chandra ACIS	Joe DePasquale, Paul Plucinsky (SAO)					
Suzaku XIS	Eric Miller (MIT)					
Swift XRT	Andrew Beardmore (Leicester)					
Models	Randall Smith (SAO)					

2

Paul Plucinsky

What Have We Done 2007 – 2010 ?

- worked exclusively on the SMC SNR 1E 0102.2-7219
- developed a coherent spectral model for E0102 which is consistent with the XMM/RGS, Chandra/HETG, XMM/MOS, & XMM/pn data
- fit Chandra (ACIS & HETG), XMM (RGS, pn, MOS), Suzaku (XIS), & Swift (XRT) data with this model
- model, data sets, and results are available for the community on the twiki page: "http://cxc.harvard.edu/twiki/bin/view/SnrEO102/WebHome"
- we used this spectral model to quantify the consistency of the effective area models of the various instruments by fitting observations of E0102 with the *same* spectral model and only allowing the normalizations of 4 line complexes to vary
- in particular, we compare the fitted normalizations of the OVII triplet (560-574 eV), the OVIII Ly-a (654 eV), the NeIX triplet (905-922 eV), and the NeX Ly-alpha line (1022 eV)
- results published in 2008 SPIE proceedings (Plucinsky et al. 2008, SPIE, Vol. 7011, arXiv: 0807:2176)

DePasquale (SAO)

Relatively simple morphology, but significant spectral variations

Extended source minimizes pileup, small size minimizes off-axis effects

Three Color Image

Red: 0.2-0.75 keV, Green: 0.8-1.1 keV, Blue: 1.1-2.0 keV

Paul Plucinsky

CXC

PART

XMM-Newton RGS Spectrum of E0102:

Process to develop a Definitive Model for E0102

• develop a model based on the high-resolution spectral data from the RGS (Rasmussen et al. 2001) and HETG (Flanagan et al. 2004) and fit all data with the *SAME* model

- use the high-resolution spectral data to identify and characterize the line emission from 0.3-2.0 keV
- use the MOS, pn, & XIS to determine lines and continuum above 2.0 keV

Table	e 1. Spectra	l Línes In	cluded in	n the E0102 Refe	rence Mode	al (v1.9)		
Line ID	$E (keV)^{a}$	λ (Å) ^a	Flux ^b	Line ID	$E (keV)^a$	λ (Å) ^a	Flux ^b	List
C VI Lya	0.3675	33.737	175.2	Ne IX i	0.9148	13.553	249.6	
Fe XXIV	0.3826	32.405	18.4	Fe XIX	0.9172	13.517	0.0	•
S XIV	0.4075	30.425	11.8	Ne IX-r	0.922	13.447	1380.5	<u>11 th</u>
N VI f	0.4198	29.534	6.8	Fe XX	0.9668°	12.824	120.5	
N VI i	0.4264	29.076	2.0	Ne X Lya	1.0217	12.135	1378.3	
N VI r	0.4307	28.786	10.5	Fe XXIII	1.0564	11.736	24.2	Model
C VI Ly β	0.4356	28.462	49.5	Ne IX He β	1.074	11.544	320.7	WIUUUI
C VI Lyγ	0.4594	26.988	27.3	Ne IX He γ	1.127	11.001	123.1	lines
O VII f	0.561	22.1	1313.2	Fe XXIV	1.168 °	10.615	173.5	
O VII i	0.5686	21.805	494.4	Ne X Ly β	1.211	10.238	202.2	One un
O VII r	0.5739	21.603	2744.7	Ne X Ly γ	1.277	9.709	78.5	
O VIII Lya	0.6536	18.969	4393.3	Ne X Ly δ	1.308	9.478	37.1	weak li
O VII He β	0.6656	18.627	500.9	Mg XI f	1.3311	9.314	108.7	
Ο VII Heγ	0.6978	17.767	236.1	Mg XI i	1.3431	9.231	27.5	Fe line
O VII Heð	0.7127	17.396	124.9	Mg XI r	1.3522	9.169	231.0	• • • •
Fe XVII	0.7252	17.096	130.9	7 ?	1.4317	8.659	8.1	include
Fe XVII	0.7271 °	17.051	165.9	Mg XII Lya	1.4721	8.422	110.2	normali
Fe XVII	0.7389	16.779	82.3	Mg XI Heβ	1.579 °	7.852	50.6	norman
Ο VIII Lyβ	0.7746	16.006	788.6	Mg XI He γ	1.659	7.473	16.0	future
Fe XVII	0.8124 °	15.261	90.5	Mg XII Lyβ	1.745 °	7.105	29.7	invoctio
O VIII Ly γ	0.817	15.175	243.1	Si XIII f	1.8395	6.74	13.8	mvesug
Fe XVII	0.8258	15.013	65.1	Si XIII i	1.8538	6.688	3.4	
Ο VIII Lyδ	0.8365	14.821	62.7	Si XIII r	1.865	6.647	34.6	
Fe XVIII	0.8503 °	14.581	407.3	Si XIV Lya	2.0052	6.183	11.2	
Fe XVIII	0.8726°	14.208	89.6	Si XIII Heβ	2.1818	5.682	4.3	

S XV f,i,r

2.45

5.06

12.7

of Lines <u>ne Model</u>

includes 52

identified, ine

at 917 eV ed with zero ization for gations

^a Theoretical rest energies; wavelengths are hc/E.

 b Observed flux in 10^{-6} photons cm⁻²s⁻¹

Ne IX f

^c This line is broader than the nominal width, see text

0.9051

690.2

13.698

E0102 Twiki:

CXC collaboration site	and the states	Jump	Search						
SnrE0102	TWiki > SnrE0102 Web > WebHome (24 Feb 2009, PaulPlucinsky)		Edit Attach						
Hello <u>Paul Plucinsky</u> ≌ Log Out	Welcome to the SNR 1E 0102-7219 web								
- Create personal sidebar	As an extension of the International Astronomical Consortium for High Energy Calibration <u>IACHEC</u> - this page is designed to facilitate cross- calibration efforts between the XMM and Chandra calibration teams using the wonderful SNR "E0102".								
SnrE0102 Web Create New Topic Index	 <u>Action items</u> from the May 2007 IACHEC meeting. <u>Working Group</u> web page for the May 2008 IACHEC meeting. 								
 Search Changes 	Table of Contents:								
 Notifications Statistics Preferences 	 ↓ <u>The Definitive E0102 Calibration Model</u> ↓ <u>The Absorption Model</u> ↓ <u>The NoLine Model</u> 								
Webs AcisCal	 ↓ <u>Comparison with Data</u> ↓ <u>The E0102 Model - OBSOLETE</u> 								
AcisOps CXCRadiation	 ↓ <u>Meeting Notes</u> ↓ <u>Open Actions</u> 								
ChASeM33 HrcCal	↓ <u>Web Utilities</u>								
Sandbox SnrE0102 TWiki Tracer	The Definitive E0102 Calibration Model								
	 Please post new models to this <u>page</u> Please post relevant data and/or images to the <u>Data Analysis</u> topic. 								
	The Absorption Model								
	 Paul Plucinsky's <u>AbsorptionModel</u> absorption model, including a two-component absorption model and a description of how it was developed. NEW as of April 27, 2008 Two component absorption model using Wilms absorption model: 								
aul Plucinsky —	8		IACHEC April 201						

Constraining the Parameters in the Model

• model has ~200 parameters, we will reduce the number of free parameters to 5 or 7 for our calibration objective of measuring the OVII, OVIII, NeIX, & NeX normalizations

- <u>Absorption</u>: Galactic component fixed at $5.36 \times 10^{20} \text{ cm}^{-2}$
 - \bullet SMC component fixed at 5.75 x 10^{20} cm^-2 with abundances set to Russell & Dopita 1992 SMC abundances

<u>Continuum:</u> • low temperature APEC "No-Line" kT=0.164 keV, Norm=3.48 x 10⁻² cm⁻⁵

• high temperature APEC "No-Line" kT=1.736 keV, Norm=1.85 x 10⁻³ cm⁻⁵

<u>Line Emission</u>: • freeze energies to known values and set widths to RGS-determined value

- freeze normalizations of all lines except for OVII For, OVIII Ly-a, Ne IX Res, and Ne X Ly-a
- for OVII triplet and Ne IX triplet only one normalization is allowed to vary, the other line normalizations are set to the ratio determined by the RGS
- Scale Factor: overall normalization to account for different extraction regions
- Gain: MOS and XIS saw a significant improvement with global gain adjustment

ACIS, pn, XRT have 5 free parameters, MOS, XIS have 7 free parameters

CXC

ACIS, XRT, MOS, pn, and XIS images of E0102

- ACIS has the smallest extraction region
- XIS has the largest extraction region which includes emission from a nearby XRB
- each team selected observations conducted in the modes for which they are most confident of the calibration

• new HRMA effective area released before 2009 IACHEC meeting

- assume a 4% difference between RGS1 & RGS2 which is mostly independent of energy
- uncertainties are the statistical uncertainties and underestimate the true uncertainty
- ACIS, XIS, & XRT show similar trend with energy
- 27 of 32 normalizations agree with the RGS within 10%
- **BUT**, new ACIS contamination model released in 12/2009

What's New Since IACHEC 2009:

• the ACIS contamination model was updated in December 2009

1 Contractor

Rectan

What's New Since IACHEC 2009:

What We Hope to Accomplish at this IACHEC:

• refine weak lines in the model, O or Fe? (RGS analysis from Pollock)

• refit instruments as necessary, new response matrix for pn, new contamination correction for RGS at late times (should not affect results from early in the mission)

• develop detailed outline for an A & A paper

• could we submit the clusters, G21.5-0.9, and E0102 calibration papers to be published in the same Journal and Issue ?

Finally, SNRs other than E0102 !!

• N132D, LMC SNR, already used by XMM for calibration, spatially and spectrally more complicated than E0102

• Cas A, used by previous missions, however, much more complicated spatially and spectrally than E0102, interesting temporal behavior (see talk on Wednesday by Patnaude)

• Tycho – less complicated spatially and spectrally than Cas A but much larger, off-axis affects will be important

N132D: Brightest SNR in the LMC

• spatial, larger than E0102 and more complicated, absorption varies significantly across the remnant

• spectrum is significantly more complicated due to significant Fe emission

