XMM-Newton — Chandra
Blazar
Flux Comparison
Blazar Sample
Blazar Sample

Objective: Comparison of XMM-Newton — Chandra fluxes in various bands.

For this we're using a sample of Blazars:
 PKS 2155-304, 3C 273, H 1426+428 and Mkn 421
Blazar Sample

Objective: Comparison of XMM-Newton — Chandra fluxes in various bands.

For this we’re using a sample of Blazars:
PKS 2155-304, 3C 273, H 1426+428 and Mkn 421

• Relatively simple spectra overall; (absorbed) power laws in narrow bands.
Blazar Sample

Objective: Comparison of XMM-Newton — Chandra fluxes in various bands.

For this we’re using a sample of Blazars:
 PKS 2155-304, 3C 273, H 1426+428 and Mkn 421

• Relatively simple spectra overall; (absorbed) power laws in narrow bands.
• Flux covers the 0.1 - 10.0 keV band.
Blazar Sample

Objective: Comparison of XMM-Newton — Chandra fluxes in various bands.

For this we’re using a sample of Blazars:
PKS 2155-304, 3C 273, H 1426+428 and Mkn 421

• Relatively simple spectra overall; (absorbed) power laws in narrow bands.
• Flux covers the 0.1 – 10.0 keV band.
• Bright
 > piled in EPIC -> PSF core excision introduces added uncertainty in flux determination
Objective: Comparison of XMM-Newton — Chandra fluxes in various bands.

For this we’re using a sample of Blazars:
 PKS 2155-304, 3C 273, H 1426+428 and Mkn 421

• Relatively simple spectra overall; (absorbed) power laws in narrow bands.
• Flux covers the 0.1 - 10.0 keV band.
• Bright
 › piled in EPIC -> PSF core excision introduces added uncertainty in flux determination
• Variable, even within observation timescale
 › require XMM / Chandra / … coordinated observations
 › simultaneous GTIs across instruments
 › need to use normalised fluxes to compare between observations
Blazar Sample

Objective: Comparison of XMM-Newton — Chandra fluxes in various bands.

For this we’re using a sample of Blazars:
 PKS 2155-304, 3C 273, H 1426+428 and Mkn 421

- Relatively simple spectra overall; (absorbed) power laws in narrow bands.
- Flux covers the 0.1 - 10.0 keV band.
- Bright
 > piled in EPIC -> PSF core excision introduces added uncertainty in flux determination
- Variable, even within observation timescale
 > require XMM / Chandra / … coordinated observations
 > simultaneous GTIs across instruments
 > need to use normalised fluxes to compare between observations

16 coordinated XMM-Newton / Chandra observations, resulting in 31 strictly simultaneous GTIs for flux comparison.
Analysis Details (I)
Data reduction:
Use latest publicly available s/w and calibration files:
• SAS 9.0
• CIAO 4.2 + CALDB 4.2.0
Data reduction:
Use latest publicly available s/w and calibration files:
• SAS 9.0
• CIAO 4.2 + CALDB 4.2.0

Spectral fitting:
• Per band, fit an absorbed power-law and determine the model flux
• Fit instruments independently
• Chandra + / - grating orders jointly fit
• Use orders 1 - 10 for HRC LETG response
Analysis Details (I)

Data reduction:
Use latest publicly available s/w and calibration files:
• SAS 9.0
• CIAO 4.2 + CALDB 4.2.0

Spectral fitting:
• Per band, fit an absorbed power-law and determine the model flux
• Fit instruments independently
• Chandra + / - grating orders jointly fit
• Use orders 1 – 10 for HRC LETG response

Energy bands are those used in the XMM-Newton Cross Cal Archive:
• 0.15 – 0.33 keV (Lower EPIC bound – Lower RGS bound)
• 0.33 – 0.54 keV (Up to the O-edge)
• 0.54 – 0.85 keV (O-VII, O-VIII)
• 0.85 – 1.50 keV (Ne-IX, Ne-X)
• 1.50 – 4.00 keV
• 4.00 – 10.0 keV
Analysis Details (II)
Normalise fluxes within simultaneous exposures (GTIs) to compare instruments across observations:

Preferably the same benchmark across all GTIs and bands.
Normalise fluxes within simultaneous exposures (GTIs) to compare instruments across observations:

Preferably the same benchmark across all GTIs and bands.

- PN & MOS: when in TI mode no useful data in the lowest energy band
- RGS: no data in the lower or higher bands
- Chandra instrument configurations vary from exposure to exposure
Normalise fluxes within simultaneous exposures (GTIs) to compare instruments across observations:

Preferably the same benchmark across all GTIs and bands.

- PN & MOS: when in TI mode no useful data in the lowest energy band
- RGS: no data in the lower or higher bands
- Chandra instrument configurations vary from exposure to exposure

» Use as benchmark the Joint Fit Flux of all instruments in use in a particular exposure.
Results
Results

Compare current results:

> SAS 9.0
> CIAO 4.2 + CALDB 4.2.0

With results presented at the previous IACHEC (April ’09):

> SAS 8.0
> CIAO 4.1 + CALDB 4.1.1
Compare current results:

- SAS 9.0
- CIAO 4.2 + CALDB 4.2.0

With results presented at the previous IACHEC (April '09):

- SAS 8.0
- CIAO 4.1 + CALDB 4.1.1

Main changes which affect flux comparisons:

- **Calibration**: ACIS Contamination Model and HRC-S QE upgrades.
Results

Compare current results:

> SAS 9.0
> CIAO 4.2 + CALDB 4.2.0

With results presented at the previous IACHEC (April '09):

> SAS 8.0
> CIAO 4.1 + CALDB 4.1.1

Main changes which affect flux comparisons:

> **Calibration**: ACIS Contamination Model and HRC-S QE upgrades.

> **Data Analysis**: revision of EPIC source extraction regions in view of pile-up.
Results

Compare current results:
> SAS 9.0
> CIAO 4.2 + CALDB 4.2.0

With results presented at the previous IACHEC (April ’09):
> SAS 8.0
> CIAO 4.1 + CALDB 4.1.1

Main changes which affect flux comparisons:
> **Calibration**: ACIS Contamination Model and HRC-S QE upgrades.
> **Data Analysis**: revision of EPIC source extraction regions in view of pile-up.
> **Data**: an additional PKS2155-304 coordinated observation performed in May 2009.
Results

Compare current results:

> SAS 9.0
> CIAO 4.2 + CALDB 4.2.0

With results presented at the previous IACHEC (April '09):

> SAS 8.0
> CIAO 4.1 + CALDB 4.1.1

Main changes which affect flux comparisons:

> **Calibration**: ACIS Contamination Model and HRC-S QE upgrades.

> **Data Analysis**: revision of EPIC source extraction regions in view of pile-up.

> **Data**: an additional PKS2155-304 coordinated observation performed in May 2009.
Results

Compare current results:

> SAS 9.0
> CIAO 4.2 + CALDB 4.2.0

“New”

With results presented at the previous IACHEC (April ’09):

> SAS 8.0
> CIAO 4.1 + CALDB 4.1.1

“Old”

Main changes which affect flux comparisons:

> **Calibration**: ACIS Contamination Model and HRC-S QE upgrades.
> **Data Analysis**: revision of EPIC source extraction regions in view of pile-up.
> **Data**: an additional PKS2155-304 coordinated observation performed in May 2009.
Results

Flux Method: II

Version:
SAS9.0 – CIAO4.2/CALDB4.2.0

Targets:
3C273
H1426+428
Mkn421
Mkn590
PKS2155-304
Results

Flux Method: II

Version:
SAS9.0 - CIAO4.2/CALDB4.2.0

Targets:
3C273
H1426+428
Mkn421
Mkn590
PKS2155-304
Results

Flux Method: II
Version:
SAS6.0 - CIA04.2/CALDB4.2.0
Targets:
3C273
H1426+428
Mkn421
Mkn590
PKS2155–304
0.15 – 0.33 keV

Relative Flux, 0.15 - 0.33 keV Band

Flux Method: II

Version: SAS9.0 - CIAO4.2/CALDB4.2.0 ISIS

Targets:
- 3C273
- H1426+428
- Mrk421
- PKS2155-304
0.33 - 0.54 keV New

Relative Flux, 0.33 - 0.54 keV Band

Flux Method: II

Version:
SAS9.0 - CIAO4.2/CALDB4.2.0 ISIS

Targets:
3C273
H1426+428
Mkn421
PKS2155-304
0.33 – 0.54 keV New

Relative Flux, 0.33 - 0.54 keV Band

Flux Method: II
Version: SAS9.0 - CIA04.2/CALDB4.2.0 ISIS
Relative Flux, 0.54 - 0.85 keV Band

Flux Method: II

Version:
SAS8.0 - CIAO4.1/CALDB4.1.1 ISIS

Targets:
3C273
H1426+428
Mrk421
PKS2155-304
0.54 - 0.85 keV New

Relative Flux, 0.54 - 0.85 keV Band

Flux Method: II

Version: SAS9.0 - CIAO4.2/CALDB4.2.0 ISIS

Targets:
3C273
H1426+428
Mkn421
PKS2155-304
Relative Flux, 0.85 - 1.50 keV Band

Flux Method: II

Version:
SAS8.0 – CIAO4.1/CALDB4.1.1 ISIS

Targets:
3C273
H1426+428
Mkn421
PKS2155–304

XMM-Newton
Michael Smith, ESAC

0.85 - 1.50 keV
Old
0.85 - 1.50 keV New

Relative Flux, 0.85 - 1.50 keV Band

Flux Method: II

Version:
SAS9.0 - CIAO4.2/CALDB4.2.0 ISIS

Targets:
3C273
H1426+428
Mrk421
PKS2155-304
Relative Flux, 1.50 - 4.00 keV Band

Flux Method: II

Version:
SAS8.0 - CIAO4.1/CALDB4.1.1 ISIS

Targets:
3C273
H1426+428
Mrk421
PKS2155-304
1.50 – 4.00 keV

Relative Flux, 1.50 – 4.00 keV Band

PN
M1
M2
R1
R2
ACISS-LEG
ACISS-MEG
ACISS-HEG
HRCS-LEG
HRCS-LEG

Flux Method: II

Version:
SAS9.0 – CIAO4.2/CALDB4.2.0 ISIS

Targets:
3C273
H1426+428
Mrk421
PKS2155–304
4.00 - 10.0 keV Old

Relative Flux, 4.00 - 10.00 keV Band

Flux Method: II

Version:
SAS6.0 - CIAO4.1/CALDB4.1.1 ISIS

Targets:
3C273
H1426+428
Mkn421
PKS2155-304"
4.00 – 10.0 keV

Relative Flux, 4.00 - 10.00 keV Band

Normalized to Combined

Flux Method: II

Version:
SA59.0 – CIA04.2/CALDB4.2.0 ISIS

Targets:
3C273
HC26+428
Mkn421
PKS2155–304
Mean Relative Flux

Mean Relative Flux per Energy Band

Flux Method: II

Version:
SAS9.0 - CIAO4.2/CALDB4.2.0 ISIS
Mean Relative Flux

Mean Relative Flux per Energy Band

Flux Method: II

Version:
SAS9.0 - CIAO4.2/CALDB4.2.0 ISIS
Mean Relative Flux

Mean Relative Flux per Energy Band

Flux Method: II
Version: SA59.0 - CIA04.2/CALDB4.2.0 ISIS
ACIS-S Spectra in 0.33-0.54 keV (I)

Relative Phl, 0.33 - 0.54 keV Band

Flux Method: II
Version: SAS9.0 - CIAO4.2/CALDB4.2.0 ISIS
Targets: 3C273
H1426+428
Mkn421
PKS2155−304
ACIS-S Spectra in 0.33-0.54 keV (II)

Relative norm, 0.33 - 0.54 keV Band

Flux Method: II

Version:
SAS9.0 - CIAO4.2/CALDB4.2.0 ISIS

Targets:
3C273
H1426+428
Mkn421
PKS2155-304
ACIS-S Spectra in 0.33-0.54 keV (III)
ACIS-S Spectra in 0.33-0.54 keV (III)

0.33 - 0.54 keV Band
PKS21E5-304 0124930301/3188 (Rev 0362)
PN/SW/1M N1/SW/1K M2/SW/MD R1-1 R2-1 ACISS/LEG-1 ACISS/LEG+1

Counts / s / keV

Epic Ratio

ROS Ratio

LEO Ratio

Energy (keV)

-1 Order
Conclusions

HRC-S LETG

Huge improvement with new Chandra calibration; still a trend:
• from 5 - 10% flux deficit w.r.t. EPIC below 0.33 keV
• to 10 - 20% excess above 1.5 keV
Conclusions

HRC-S LETG

Huge improvement with new Chandra calibration; still a trend:
• from 5 - 10% flux deficit w.r.t. EPIC below 0.33 keV
• to 10 - 20% excess above 1.5 keV

ACIS-S LETG

ACIS contaminant model has greatly improved situation in 0.33 - 0.54 keV band: fluxes mostly well within ± 10%, however May 2009 data show 15% deficit.
Conclusions

HRC-S LETG

Huge improvement with new Chandra calibration;
still a trend:
• from 5 - 10% flux deficit w.r.t. EPIC below 0.33 keV
• to 10 - 20% excess above 1.5 keV

ACIS-S LETG

ACIS contaminant model has greatly improved situation in 0.33 - 0.54 keV band:
fluxes mostly well within ± 10%, however May 2009 data show 15% deficit.

ACIS-S LETG & HETG

Above 0.54 keV, an excess of 0 - 10% w.r.t. PN, better agreement with MOS fluxes.