Working group status report Non-thermal SNRs : G21.5-0.9

M. Tsujimoto, M. Guainazzi, P P. Plucinsky, A. P. Beardmore, L. Natalucci, J. L. L. Posson-Brown, A. Read

Contents

1. Background \& Goal
2. Summary
3. Target
4. Data
5. Analysis
6. Result

1. Background \& Goal

- Background

Crab has been used as a celestial calibration source since the beginning of the X-ray astronomy.
Crab is often too bright for current and future instruments of improved sensitivity.

- Goal

Propose G21.5-0.9 as a faint substitute to Crab for current and future missions.
Make a comparison among current instruments using this source for cross-calibration.

6. Summary

- Analysis done, comparison made, paper drafted.

Cross-calibration of the X-ray Instruments onboard the Chandra,
INTEGRAL, Suzaku, Swift, and XMM-Newton Observatories using G21.5-0.9

Masahiro Tsujimoto, ${ }^{1}$ Matteo Guainazzi, ${ }^{2}$ Paul P. Plucinsky, ${ }^{3}$ Andrew P. Beardmore, ${ }^{4}$ Manabu Ishida, ${ }^{1}$ Lorenzo Natalucci, ${ }^{5}$ Jennifer L. L. Posson-Brown, ${ }^{3}$ Andrew Read ${ }^{4}$
${ }^{1}$ Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science,
3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 229-8510
${ }^{2}$ European Space Agency, European Space Astronomy Centre, E-28691 Villanueva de la Cañada, Madrid, Spain
${ }^{3}$ Harvard-Smithsonian Center for Astrophysics, MS-70, 60 Garden Street, Cambridge, MA 02138, USA
${ }^{4}$ Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, United Kingdom
${ }^{5}$ INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via del Fosso del Cavaliere, 10000133 Roma, Italy
tsujimot@astro.isas.jaxa.jp

- Some inconsistencies among instruments remain. We do not need to resolve these inconsistencies, but show that these inconsistencies are consistent with previously known results.
- I ask
(1) co-authors to read the draft, list possible causes for the inconsistencies, and reexamine the numbers.
(2) IACHEC colleagues if the inconsistencies found in G21.5-0.9 are in line with their understanding with their instruments and other IACHEC targets.

2. Target -- G21.5-0.9 --

- Nature : PWN (Age~870 yr, D~4.8kpc)
- Advantages

Constant. Simple spectrum (power-law).
Faint ($\sim 2 \mathrm{mCrab}$). Matches with dynamic range of current and future missions < 10 keV .
Compact in size (young, distant). Mitigates the spatial differences of responses.
Simple morphology. Makes src/bkg extraction easy.
Flat (Gamma~1.8). spectral shape. Extends to $>10 \mathrm{keV}$.
Soft-band ($<1 \mathrm{keV}$) cut-off. Decouples the uncertainty of contamination on CCDs.
Calibration source for Chandra, Swift. Software validation source for XMM.

2. Target -- G21.5-0.9 --

- Limitations

Extended (\sim^{\prime}). Cannot be used for gratings.
Spatial spectral variation (softening of power-law index).
Some irrelevant emission.
Soft-band cut-off. Carnot be used for soft-band calibration.

3. Data (1/2) Instruments

- Tsujimoto (ISAS) ... Suzaku/XIS,HXD(PIN)
- Guainazzi (ESAC) ... XMM/EPIC(MOS)
- Read (Leister) ... XMM/EPIC(pn)
- Plucinsky, Posson-Brown (SAO) ... Chandra/ACIS-S
- Beardmore (Leister) ... Swift/XRT
- Nataluci (INAF) ... INTEGRAL/IBIS
* Dropped instruments : Chandra/HRC, RXTE/PCA. They can rejoin any time.

Instruments

- Soft-band (<10 keV) instruments ... ACIS, EPIC, XIS, XRT (all Xray CCDs with X-ray telescopes).
- Hard-band (>10 keV) instruments ... HXD, IBIS

3. Data (2/2) Observations

4. Analysis (1/2) Extraction

- Source extraction from a 165" circle (soft-band instr.)

To encompass all the spatial structure of G21.5-0.9.
To fit in one CCD.
To leave a room for background.

4. Analysis (1/2) Extraction

- Background extraction (soft-band instr.).

Annulus ... XIS ($5^{\prime}-7^{\prime}$), XRT (?-?), MOS (200"-300")
Others ... ACIS-S3, EPIC (pn)

4. Analysis (2/2) Fitting

- Model : tbabs*pegpwrlw.
- Photoelectric absorption cross section : Verner et al. 1996.
- Abundance : Wilms et al. 2000.
- Energy band : 2-8 keV.
- Parameters

Soft-band instr.: NH, G, Fx (2-8 keV).
Hard-band instr.: G, Fx ($15-70 \mathrm{keV}$). $\mathrm{NH}=3.2 \times 10^{22} / \mathrm{cm}^{2}$

- No known correction factor for normalization applied.
- Xspec used. The traditional chi-square minimization approach adopted.

5. Results (1/7) Comparison

Label	$\begin{gathered} N_{\mathrm{H}^{2} *} \\ \left(10^{22} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\Gamma^{3} \dagger$	$\begin{aligned} & \hline F_{\mathrm{X}, \text { soft }}{ }^{4} \ddagger \\ & \left(10^{-11} \mathrm{er}\right. \end{aligned}$	$\begin{aligned} & \quad F_{\mathrm{X}, \mathrm{hard}}{ }^{5} \S \\ & \left.\mathrm{~s}^{-2} \mathrm{~cm}^{-2}\right) \end{aligned}$	$\begin{aligned} & \hline \text { Red- } \chi^{2} \\ & \text { /d.o.f. } \end{aligned}$
Chandra/ACIS-S3					
CS0	2.99 (2.93-3.04)	1.83 (1.80-1.86)	6.10 (6.05-6.16)	\ldots	0.93/302
CS1	3.07 (3.01-3.12)	1.85 (1.83-1.88)	6.09 (6.04-6.13)	\ldots	0.90/326
CS2	3.04 (2.98-3.09)	1.82 (1.79-1.84)	6.06 (6.01-6.11)	\ldots	1.04/325
CS3	3.11 (3.05-3.16)	1.84 (1.81-1.87)	6.04 (5.99-6.09)	\ldots	0.89/327
CS4	3.16 (3.11-3.22)	1.88 (1.85-1.91)	6.10 (6.05-6.15)	...	1.03/330
CS5	3.00 (2.95-3.06)	1.81 (1.78-1.84)	6.01 (5.97-6.06)	\ldots	1.06/327
CS6	3.14 (3.08-3.20)	1.88 (1.85-1.91)	6.03 (5.98-6.08)	\ldots	1.07/326
CS0-6	3.07 (3.05-3.09)	1.84 (1.83-1.85)	6.06 (6.04-6.08)	\ldots	0.99/2281
INTEGRAL/IBIS-ISGRI					
IS0	3.20	2.18 (2.09-2.26)	\ldots	4.25 (4.12-4.38)	$1.72 / 7$
Suzaku/XIS and HXD-PIN					
SI0	3.17 (3.13-3.21)	1.91 (1.89-1.92)	6.36 (6.32-6.39)	\ldots	1.10/565
SI1	3.24 (3.20-3.28)	1.91 (1.89-1.93)	6.64 (6.60-6.67)	\ldots	1.04/ 569
SI3	3.17 (3.13-3.21)	1.90 (1.89-1.92)	6.47 (6.44-6.51)	\ldots	0.94/582
SI0-3	3.20 (3.18-3.22)	1.91 (1.90-1.92)	6.38 (6.35-6.41)		$1.03 / 1720$
SP0	3.20	2.28 (2.14-2.42)	-	6.10 (5.79-6.42)	$1.40 / 12$
SI0 $-3+\mathrm{SP} 0$	3.20 (3.18-3.22)	1.91 (1.90-1.92)	6.38 (6.36-6.41)		$1.03 / 1733$
Swift/XRT					
SX0	2.97 (2.88-3.07)	1.77 (1.73-1.81)	5.79 (5.72-5.87)	\ldots	0.99/421
SX1	2.90 (2.83-2.98)	1.77 (1.74-1.81)	5.48 (5.42-5.54)	\ldots	1.03/479
SX2	3.05 (2.98-3.13)	1.90 (1.87-1.94)	5.46 (5.40-5.51)	\ldots	1.07/ 488
SX3	3.16 (3.08-3.25)	1.93 (1.89-1.96)	5.46 (5.40-5.52)	\ldots	1.14/478
$\mathrm{SX} 0+1$	2.93 (2.87-2.99)	1.77 (1.75-1.80)	5.61 (5.56-5.65)	\ldots	1.02/ 903
SX2+3	3.10 (3.05-3.16)	1.91 (1.89-1.94)	5.46 (5.41-5.50)	\ldots	1.11/969
XMM-Newton/EPIC					
EM1	2.90 (2.87-2.94)	1.80 (1.79-1.82)	5.46 (5.43-5.49)	\ldots	1.11/276
EM2	2.91 (2.88-2.95)	1.85 (1.83-1.87)	5.28 (5.26-5.31)	.	1.07/274
EP0	2.76 (2.74-2.79)	1.79 (1.78-1.80)	5.61 (5.59-5.63)	\ldots	1.10/655
All	$2.84(2.82-2.86)$	1.81 (1.80-1.81)	$5.38(5.36-5.40)$	\ldots	$1.13 / 1209$

5. Results (2/7) Comparison II

5. Results (3/7) Chandra/ACIS

- Inhomogeneity of data set (different epochs, different off-axis positions).

5. Results (4/7) Swift/XRT

- Inhomogeneity of data set (different epochs).
- RMF change with substrate voltage change.

5. Results (5/7) Suzaku/XIS

- Flux recovery from outside of the source extraction region by software simulation.

5. Results (6/7) XMM/EPIC

- Background subtraction (pn).
- Low-energy tail of LSF.

5. Results (7/7) PIN vs IBIS

- Inconsistency of Fx.

6. Summary

- Analysis done, comparison made, paper drafted.
- Some inconsistencies remain.

Cross-calibration of the X-ray Instruments onboard the Chandra,
INTEGRAL, Suzaku, Swift, and XMM-Newton Observatories using G21.5-0.9

Masahiro Tsujimoto, ${ }^{1}$ Matteo Guainazzi, ${ }^{2}$ Paul P. Plucinsky, ${ }^{3}$ Andrew P. Beardmore, ${ }^{4}$ Manabu Ishida, ${ }^{1}$ Lorenzo Natalucci, ${ }^{5}$ Jennifer L. L. Posson-Brown, ${ }^{3}$ Andrew Read ${ }^{4}$
${ }^{1}$ Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science,
3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 229-8510
${ }^{2}$ European Space Agency, European Space Astronomy Centre, E-28691 Villanueva de la Cañada, Madrid, Spain
${ }^{3}$ Harvard-Smithsonian Center for Astrophysics, MS-70, 60 Garden Street, Cambridge, MA 02138, USA
${ }^{4}$ Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, United Kingdom
${ }^{5}$ INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via del Fosso del Cavaliere, 10000133 Roma, Italy
tsujimot@astro.isas.jaxa.jp

- I ask:
- Co-authors to read the draft, list possible causes for the inconsistencies, and reexamine the numbers.

IACHEC colleagues if the inconsistencies found in Gw21.5-0.9 are in line with their understanding with their instruments and IACHEC targets.

