

The Astro-H Mission

Astro-H Overview

Astro-H will be a major international x-ray observatory.

JAXA Mission with participation from NASA and ESA (through SRON)

Observing time will be made available to Japan, ESA and NASA communities.

Mass ~ 2500 kg Power ~ 3.5 kW (EOL) Length ~ 14 m (when fully deployed) Mission lifetime ~ 3 yr (required), 5 yr (goal)

Launched on Japanese H-IIA from Tanegashima 2014, 550 km, circular, 31 deg

Very broadband x-ray spectroscopy with high sensitivity.

Astro-H Objectives

Scientific objectives :

Revealing the large-scale structure and its evolution of the Universe

Understanding the extreme conditions in the Universe Exploring the diverse phenomena of the non-thermal Universe Elucidating dark matter and dark energy

Key features :

High resolution spectroscopy with X-Ray Microcalorimeter Hard X-ray focusing imaging High sensitive wide-band spectroscopy (0.3-600 keV)

Mirror (SXT) for SXS

> Star Trackers

X-ray Calorimeter -Spectrometer (XCS) for SXS

> Anti-Sun Radiator Panel

Mirrors for SXI & HXT Optical Bench for SXS & SXI

> Solar Array

Extendable Bench for HXI

HXI

Design Parameters of Instruments

	Specifications (Requirement)
Hard X-ray Imaging System (HXT+HXI) 5-80 keV	Effective area : 300 cm ² (@30 keV) Spatial resolution : 1.7 arcmin (HPD) Energy resolution : 2 keV Field of view : 9 arcmin ² @30 keV
Soft X-ray Spectrometer System (SXT-S+SXS) 0.3-10 keV	Energy resolution : 7 eV Spatial resolution : 1.7 arcmin (HPD) Effective area : 210 cm ² (@6 keV) Field of view : 3 arcmin ² @6 keV
Soft X-ray Imaging System (SXT-I+SXI) 0.5-12 keV	Spatial resolution : 1.7 arcmin (HPD) Effective area : 360 cm ² @6 keV Energy resolution : 150 eV Field of view : 38 arcmin ² @6 keV
Soft γ-ray detector (SGD) 10-600 keV	Effective area : 100cm ² @100 keV Energy resolution : 2 keV @40 keV Astrometric accuracy : <0.6 arcdeg (E<150 keV)

Hard X-ray Telescope (HXT) ISAS, Nagoya... Imaging at Higher Energies

New Hard X-ray Telescope with large effective area

Two Telescopes - 12 m f.l., 45 cm dia. mounted on the fixed optical bench

Hard X-ray Imager (HXI) ISAS, U. Tokyo... Cutting Edge Technology

Well-type BGO Active Shield (APD Readout)

Si/CdTe Hybrid Detector (Double Sided)

VERY Careful Design to achieve "Low Background"

Simulation: Comparison with INTEGRAL/IBIS image

ASTRO-H HXI

100-150 ks/pointing

by A.Bamba

INTEGRAL IBIS

(Revnivtsev+04)

Soft Gamma-ray Detector (SGD) ISAS, U. Tokyo,Stanford...Higher sensitivity above 80 keV

Completely new approach for obtaining lower background

High throughput X-Ray mirror

5.6 m focal length – *fixed optical bench*

Outer Diameter - 45 cm

Half-Power Diameter of better than 1.7 arcmin

Soft X-ray Imager (SXI) ISAS, Osaka, Kyoto, ...

Large FOV CCD (focal length 5.6m)

Astro-H SXI vs Suzaku XIS on A1795

Energy resolution : 150 eV Field of view : 38 arcmin @6 keV 4CCD chips/62x62mm²

Angular resolution : 1.7 arcmin (HPD) (requirement)

Hamamatsu Photonics

The X-Ray Calorimeter Spectrometer

Non-dispersive spectrometer X-ray photon TIME Thermometer Absorber Weak link Heat sink **Doped Si Thermistor** Resistance Large dR/dT Temperature

$$\Delta E_{FWHM} = 2.35 \zeta \sqrt{kT^2 C}$$

- Energy resolution is limited by thermodynamics
- Energy resolution of several eV possible, nearly independent of energy.
- SXS expected to have ~ 5 eV resolution at the system level. 6x6 array of 30 x 30" pixels

SXS Performance Requirements

	Requirements (/Goal)
Energy resolution	7 eV (FWHM) (4 eV(FWHM) Goal)
Energy range	0.3 - 12 keV
Background rate	1.5 x 10 ⁻³ cts/s/keV
Field of view	2.9 x 2.9 arcmin
Detector array	6 x 6
Absorber size	800 µm
Angular resolution	1.7 arcmin HPD
Effective area	160 / 210 cm² (at 1 / 6 keV)
Lifetime	3 years min / 5 years goal
Maximum count rate	150 cts/s
Energy scale accuracy	2 eV

Effective area: 210 cm² @ 6 keV

Clusters of Galaxies

High Resolution Spectroscopy by Astro-H

Astro-H can detect bulk velocity flow as small as 300 km/s in the brightest 30 hot clusters (kT > 5 keV).

Astro-H will advance X-ray astronomy to a new phase by revealing dynamical motions in all scales in the universe.

Summary

- Astro-H is now in Phase C in Japan and US. Instrument and mission CDRs scheduled for June-July 2011
- Japan, US and ESA GO Programs
- Launch planned for February 2014
- Wide-band/low-background & X-ray microcalorimeter resolution
- Large International Collaboration
 - (NASA/SRON/ESA/DAI/Geneva U. /CEA/CSA and more)
- Major high-energy astrophysics for the 2nd half of the coming decade that will complement other major observatories