Status of ASTRO-H

Yoshito HABA@Nagoya University ASTRO-H Hard X-ray Telescope Team

Outline

- Overview of ASTRO-H Mission
- Current Status of ASTRO-H
- Status and topics of each instrument
- Future master schedule

ASTRO-H Mission

Launch site: Tanegashima Space Center Launch Vehicle: JAXA H-2A Rocket Orbit Altitude: 550 km Orbit Type: Approximate circular orbit Orbit Inclination: 31 degrees Orbit Period: 96 minutes Launch: 2014

Key Features

- 1. High resolution spectroscopy with the micro-calorimeter
- 2. Imaging capability with hard X-ray telescope + hard X-ray imager
- 3. High sensitive wide-band spectroscopy from 0.3 to 600 $\rm keV$

Scientific Objectives

- 1. Revealing the large-scale structure and its evolution of the Universe
- 2. Understanding the extreme condition in the Universe
- 3. Exploring the diverse phenomena of non-thermal Universe
- 4. Elucidating dark matter and dark energy

ASTRO-H Mission

Instruments onboard ASTRO-H

Current Status of ASTRO-H

- Many sub-system Critical Design Reviews (CDRs) were held before production of flight model (FM)
- System CDR is divided into two steps (CDR1 and CDR2)
- Reason for the necessity of CDR1
 - ASTRO-H is very large and complex satellite compared with past missions (e.g., one sub-system corresponds to one mission). This means that a change of design in a sub-system possibly impacts on whole system. In order to avoid such a situation, I/F between system and subsystem should be fixed as early as possible. CDR1, therefore, should be done before the Mechanical/Thermal test (MTM/TTM) of the S. C.
 - CDR2 will be done after MTM/TTM
- System CDR1 was done on Feb. 8 & 10 in 2012

Results of CDR1

We Passed!

Based on carefully prepared design reports by the team members, the reviewers recognize the size and complexity of the satellite (And of course, the importance of the mission). The reviewers all agree that we need to go ahead for further testing, since we can verify our design, only through thermal distortion, TTM MTM and micro-vibration tests.

> Flight model production phase & Preparation of test model for TTM/MTM

Current Status and/or Topics of Each Instrument

Instruments Overview

SXT Basic Design

SXT-S for micro-calorimeter SXT-I for X-ray CCD

Parameter	Value
Diameter	45 cm
Focal length	5.6 m
# of nested shells	203
reflector surface	Au mono-layer
Pre-collimator blade height	65 mm
Blade thickness	0.12 mm
Thermal shield thickness	Al 0.03 um + Polyimide 0.2 um

Parameter	Value
Operating Temperature	50 mK
Pixel size	814 x 814 um
Pixel pitch	832 um
Pixel format	6 x 6
Field of view	3.05' x 3.05'
X-ray absorber	HgTe, 8 um thickness
Optical Blocking filters	5 filters, polyimide (460 um) + Al (400 nm) total, Si mesh on two filters

SXS Current Status

Parameter	Requirement	Goal
Energy range	0.3 - 12 keV	
Energy resolution	7 eV	4 eV
Array format	6 x 6	
Field of view	2.9' x 2.9'	
Effective area	160 cm ² @1 keV 210 cm ² @6 keV	
Lifetime	3 years	5 years
Time assign accuracy	80 us	
Max count rate	150 c/s/array	
Energy scale cal. accuracy	2 eV	1 eV

SXI Design

CCD format (1chip) Imaging area: 31 x 31 mm² pixel format: 1280 x 1280 pixel size: 24 x 24 um Si thickness: 200 um

Large FoV (38 x 38 arcmin²) Low/stable background \rightarrow suitable for studying diffuse sources

SXI Current Status

 Low energy tail of SXI is slightly higher than that of XIS

- •Background level is also higher (by a factor of 4) below 8 keV
- •Above 8 keV, considerably amount of background is suppressed

HXT Basic Design

Depth-graded multilayer Bragg reflection $2d[\text{\AA}]\sin\theta = m \frac{12.39}{E[\text{keV}]}$

Parameter	Value
Diameter	45 cm
Focal length	12 m
# of nested shells	213
reflector surface	Pt/C depth-graded multilayer
Pre-collimator blade height	50 mm
Blade thickness	0.15 mm
Thermal shield thickness	Al 0.03 um + PET 5 um

HXT Current Status

• Now under assembly, and the ground calibration will start in this April.

HXI Design

HXI BBM Test Results

CdTe-DSD BBM

•0.75 mm thickness, 250 um pix

60

50

70

- Hard X-ray image is obtained successfully
- •Energy resolution $\Delta E = 1.6 \text{ keV}$ (FWHM)

Al=anode side

20000 1.6 keV (FWHM)

@60 keV

histe2 000

22000

18000

16000

14000

12000

10000

8000

6000 4000

2000

Pt=cathode side

SGD Design

Compton cameras

- Compton kinematics
- energy coverage 10-600 keV
- \cdot BGO active shield
- $\boldsymbol{\cdot} \mathsf{Fine} \ \mathsf{collimator}$
 - \cdot Narrow field of view \sim 0.55 deg.
- •SGD-WAM (Wide-band All-sky Monitor)
- Activation lines are used for energy/gain cal.

SGD Test Results

Production of prototype (final design) SGD modules started

- Robust performance even with long flexible cable
- (much longer than flight hardware)
- consistent with expected performance

Master Schedule

Due to the north-Japan earth quake (2011/Mar/11), we have decided to revise the master schedule of ASTRO-H.

Test facilities in the Tsukuba test center got severe damages by the earth quake (Broken ceilings and walls in these buildings). The recovery process is still on going. The facilities will be open again from April 2012.

Summary

- •We passed CDR1 (1st Critical Design Review)
- Starting pFM/FM production & mechanical/thermal test
- Ground measurements of BBM/EM
- Next important review is CDR2
- Launch planned for middle of 2014