Ground Calibration for GEMS XPI

Daniel Gall University of Iowa

GEMS

- Polarization measurements allow us to study:
 - Scattering
 - Magnetic fields
 - Strong gravity
- GEMS will use polarimetry to study these processes in black holes, neutron stars and SNR

What XPI will measure

- Polarization of X-rays
- Photoelectron is ejected in direction of X-ray E-field
- Photoelectron makes a track of electrons which is imaged by the TPC
- Initial direction of photoelectron gives the polarization of the X-ray

TPC Design and Requirements

- The GEMS TPC detectors need to detect 1% polarization with 1.8 x 10⁶ counts.
- 2 10 keV energy response
- Energy resolution of 1 keV in the 2 10 keV band
- ~10 arcmin angular resolution

Calibration Requirements

- X-ray beams (100% and 0% polarization) at multiple energies will be scanned across the detector window
- Polarized beams rotated with respect to the detector to produce range of polarization angles
- Pulse height to energy conversion factor must be measured
- Must be tested in flight conditions

Calibration Facility

- X-ray beamline with 2-axis translation + 1 rotational axis
- X-rays generated by commercial medical X-ray tubes chosen to be cylindrically symmetric for low intrinsic polarization
- Helium filled beamline to improve transmission at low energies

100% Polarized Sources

- X-ray beam Bragg scattered at near 45 deg angle to produce 100% polarized beam
- Crystals selected that match the Bragg angle of the required X-ray energies

Energy (keV)	Target and Line	Crystal Material	2d Spacing (Angstrom)	E at 45° keV	Bragg Order	Bragg Angle
2.70	Rh-La	Ge (111)	6.532	2.68	1	44.7
2.98	Ag-La	Si (111)	6.271	2.80	1	41.5
4.51	Ti-Ka	Si (110)	3.840	4.57	1	45.7
6.40	Fe-Ka	Sapphire (Al ₂ O ₃)	2.748	6.38	1	44.8
8.05	Cu-Ka	Ge (111)	6.532	2.68	3	45.0
8.40	W-La	Si (111)	6.271	2.80	3	44.9

0% Polarized Sources

- Cylindrically symmetric X-ray tube with circular filament
- Tube centered on beam line
- Low intrinsic polarization
 removed by continuous rotation
 to produce 0% net polarization

Pulse Height -> Energy

- GEMS is required to find the energy of incident X-rays in addition to the polarization
- For a given energy, a pulse height distribution will be produced
- The relation between pulse height and energy will be extrapolated from the measurements with tubes at different energies

