CROSS-CALIBRATION E > 10 KEV

□ Is the Crab still a reference source?

□ Increasing signal-to-noise: are source models appropriate?

□ How to extend the cross-calibration using simultaneous observations?

□ How to best coordinate these observations?

□ Can we explore common methodologies?

□ Link to the soft X-ray band

ABSOLUTE FLUX MEASUREMENTS

Hard band

Many balloon borne observations

- BATSE, COMPTEL & SPI: PL with break at ~100 keV
- □ A high energy component (> 700 keV) is seen by BATSE, not seen by SPI

Lorenzo Natalucci

IACHEC Meeting, Napa 26-29 March 2012

CRAB CROSS-CALIBRATION

- □ the high energy source in the Crab can still be considered a reference source, despite the most recent detections of variability and flaring
- The broad band spectrum is consistent with a spectral break a E~100 keV
- The Crab cross-calibration project will update the cross-calibration with the most recent observations. Potentially very useful information for upcoming missions
- □ The preliminary results show that the major differences when comparing spectra of different instruments are in the effective area normalizations
- Periodic monitoring (~few months timescale) of the source and possibly dedicated, co-ordinated campaigns will be useful

AVERAGE SPECTRUM

Parameter	HXD/PIN	HXD/GSO	XIS1	IBIS	SPI	EPIC-pn1	EPIC-pn 2	PCA	BAT
C_f	1.093 ± 0.005	1.092 ± 0.006	0.879 ± 0.007	0.969 ± 0.005	1.0	0.904 ± 0.007	0.909 ± 0.07	1.063 ± 0.006	0.809 ± 0.015
Fl_{2-10}			19.24 ± 0.03			19.79 ± 0.02	19.88 ± 0.06	23.265 ± 0.012	
Fl_{20-100}	19.03 ± 0.09	19.45 ± 0.15		17.26 ± 0.05	17.66 ± 0.04			16.49 ± 0.05	14.41 ± 0.21

PCA: Fl₂₀₋₁₀₀ is upper bound t 80 keV

Lorenzo Natalucci

IACHEC Meeting, Napa 26-29 March 2012