LOFT Large Observatory For x-ray Timing

A mission proposal selected by ESA as a candidate Cosmic Vision M3 mission devoted to X-ray timing and designed to investigate the space-time around collapsed objects

Chris Tenzer (IAAT, University of Tübingen) on behalf of the LOFT Consortium

LOFT Organization Structure

0

LOFT ESA Payload Manager		
A. Short (ESA)		
LOFT ESA Study Manager		
C. Corral van Damme / M. Ayre (ESA)		
LOFT ESA Study Scientist		
D. Lumb (ESA)		

Study lead	Large Area Detector (LAD)
Jan-Willem den Herder (SRON, The Netherlands)	Silvia Zane (MSSL, United Kingdom)
Project Manager	Wide Field Monitor (WFM)
Englas Barra (ICDO, Cultardard)	Soren Brandt (DTU, Denmark)
Enrico Bozzo (ISDC, Switzerland)	Margarita Hernanz (IEEC-CSIC, Spain)
System Engineering/Payload	Scientific and instrument simulations
Marco Feroci (INAF-IASF Roma & INFN Tor Vergata, Italy)	Jöern Wilms (Univ. of Erlangen-Nuremberg, Germany)
Science Team	Jean in 't Zand (SRON, The Netherlands)
Luigi Stella (INAF-OAR, Italy)	Digital Electronics
Michiel van der Klis (Univ. of Amsterdam, The Netherlands)	Andrea Santangelo (Univ. of Tuebingen, Germany)
Peter Jonker (SRON, The Netherlands)	Silicon detectors
	Martin Pohl (Univ. of Geneva, Switzerland)
	Andrea Vacchi (INFN, Italy)

+ C*

LOFT Organization Structure

LOFT ESA Payload Manager		
A. Short (ESA)		
LOFT ESA Study Manager		
C. Corral van Damme / M. Ayre (ESA)		
LOFT ESA Study Scientist		
D. Lumb (ESA)		

on behalf of scientists from:

Brazil, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Israel, Italy, Japan, the Netherlands, Poland, Spain, Switzerland, Turkey, United Kingdom, USA

Queters Excises and Device d		
System Engineering/Payload	Scientific and instrument simulations	
Marco Feroci (INAF-IASF Roma & INFN Tor Vergata, Italy)	Jöern Wilms (Univ. of Erlangen-Nuremberg, Germany)	
Science Team	Jean in 't Zand (SRON, The Netherlands)	
Luigi Stella (INAF-OAR, Italy)	Digital Electronics	
Michiel van der Klis (Univ. of Amsterdam, The Netherlands)	Andrea Santangelo (Univ. of Tuebingen, Germany)	
Peter Jonker (SRON, The Netherlands)	Silicon detectors	
	Martin Pohl (Univ. of Geneva, Switzerland)	
	Andrea Vacchi (INFN, Italy)	

ESA Cosmic Vision Selection

L1 Slot

<u>ATHENA:</u> X-ray Observatory (formerly IXO) <u>JUICE:</u> Mission to Jupiter and its moons (formerly EJSM-Laplace) <u>NGO:</u> Gravitational Waves Observatory (formerly LISA)

M3 Slot

<u>EChO:</u> (Exoplanet Characterisation Observatory) <u>STE-QUEST:</u> (Space-Time Explorer and Quantum Equivalence Principle Space Test) <u>MarcoPolo-R:</u> return a sample of material from a primitive near-Earth asteroid

<u>LOFT:</u> Large Observatory for X-ray Timing

9.3.2012: Call for **S-class** missions, launch in 2017

M3 (LOFT) ESA Programmatics

Anticipated Mission Timeline (if further selected)

Following this Call for Missions, four new M missions, one of which being LOFT, have been recommended by the Space Science Advisory Committee (SSAC) for further assessment. These candidate M missions for the 2022 launch slot will enter a competitive process according to the following schedule:

- Assessment Phase in 2011-2013
- Down selection to enter in Definition Phase in 2013
- Definition Phase completed by 2014
- Adoption of M3 mission in 2015
- Start of Implementation Phase by the end of 2015
- Launch by 2022.

Goal of the Assessment Phase (2011-2013)

The objective of the Assessment Phase is to provide all the elements for enabling the downselection process, in particular the space segment definition for meeting the assigned science objectives, the implementation schedule, the mission Cost at Completion, the technology readiness evaluation and the implementation risk assessment.

LOFT will address Fundamental Question 3.3 "Matter under extreme conditions" in ESA's Cosmic Vision program

3. What are the fundamental physical laws of the Universe? 3.1 Explore the limits of contemporary physics

Use stable and weightless environment of space to search for tiny deviations from the standard model of fundamental interactions

3.2 The gravitational wave Universe

Make a key step toward detecting the gravitational radiation background

generated at the Big Bang

3.3 Matter under extreme conditions

Probe gravity theory in the very strong field environment of black holes and other compact objects, and the state of matter at supra-nuclear energies in neutron stars

To match ESA Cosmic Vision Theme: Matter under extreme conditions

- Does matter orbiting close to a Black Hole event horizon follow the predictions of General Relativity?
- What is the Equation of State of matter in Neutron Stars?

Observatory Science

LOFT lifetime: 4 years

~50% of the time LOFT will be Observatory for virtually all classes of relatively bright sources (> few \times 10⁻¹² erg/cm²/s): including

X-ray bursters, High mass X-ray binaries X-ray transients (all classes) Cataclismic Variables Magnetars Gamma ray bursts (serendipitous) Nearby galaxies (SMC, LMC, M31, ...) Bright AGNs

The LOFT Mission

LOFT is specifically designed to exploit the diagnostics of very rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter.

LOFT will investigate variability from submillisecond QPO's to years long transient outbursts.

The LOFT LAD has an effective area ~20 times larger than its largest predecessor (the Proportional Counter Array onboard RossiXTE) and a much improved energy resolution.

The LOFT WFM will discover and localize X-ray transients and impulsive events and monitor spectral state changes, triggering follow-up observations and provide important science in its own.

LOFT in one Plot

Chris Tenzer - IAAT, University of Tübingen

LOFT current configuration

Industrial study by Thales Alenia Space - Italia

LOFT Instruments

Large Area Detector Requirements

Item	Requirement	Goal	
Effective area	4 m ² @ 2 keV 8 m ² @ 5 keV 10 m ² @ 8 keV 1 m ² @ 30 keV	5 m ² @ 2 keV 9.6m ² @ 5 keV 12 m ² @ 8 keV 1.2 m ² @ 30 keV	Instrument Size
Calibration	15%	10%	
accuracy area	a. 50.1 M		
Energy range Energy resolution	2 - 50 keV 260 eV @ 6 keV 200 eV (singles, 40%) 2 keV above 30 keV (allows for binning)	1 - 50 keV 200 eV @ 6 keV 160 eV (singles, 40%)	Good Energy Resolution
knowledge energy scale	10-2	0.8 10 ⁻²	
Collimated FoV (FWHM)	1 degree	0.5 degree	
Transparency of collimator	~1% at 30 keV	0.5% at 30 keV	
Flat top	12 arcmin, ± 2%	12 arcmin, ± 1%	
Time resolution	10 µs	7 µs	Great Timing
Absolute time	1 µs	1 µs	
Dead time	< 1% @ 1 Crab, < 10% @ 10 Crao	< 0.5% @ 1 Crab, < 5% @ 10 Crab	Performance
Calibration knowledge deadtime	Less than the statistical precision of power spectrum for 1 day at 15 Crab (TBC)	Factor 2 better	
Background	< 10 mCrab	< 5 mCrab	
Background knowledge	10%	5%	
Max flux (continuous no loss of info	> 500 mCrab	> 500 mCrab	High Count
Max flux (continuous, re- binned)	15 Crab	30 Crab	Rates

Wide Field Monitor Requirements

Item	Requirement	Goal	
Location accuracy	1 arcmin	0.5 arcmin	
Angular resolution	5 arcmin	3 arcmin	
Sensitivity (5 µ)	1 Crab (1 s) 5 mCrab (50 ks)	0.2 Crab (1s) 2 mCrab (50 ks)	
Calibration accuracy (sensitivity)	20 %	15 %	
Field of view	50% of the accessible part of the sky of the LAD	Same, as improvement of the sensitivity is the prime goal	FoV, Coded Mask
Energy range	2 – 50 keV	1 – 50 keV	
Energy resolution	500 eV	300 eV	
Energy scale knowledge	4%	1%	
Number of energy bands for compressed images	8	16	
Time resolution	300 sec for normal 10 µsec for triggered	150 sec for normal 5 µsec for triggered	
Absolute time calibration	1 µsec	1 µsec	
duration for rate triggers	0.1 sec - 60 sec	0.1 - 60 sec	
Rate meter data	Tomsec	8 msec	
Transient event down-ink	< 3 hours (2 orbits)	< 1.5 hour (1 orbit)	Possibly Instant
Availability of triggered WFM data	3 hours	1.5 hours	Notification?
Onboard memory	5 min @ 100 Crab	10 min @ 100 Crab	13

The LOFT Mission Profile

Orbit	Low earth (≤600 km), equatorial (<5°), circular
Launcher	Soyuz from Kourou
Satellite Mass	~2000 kg (with margins)
Satellite Power	~1800 W (with margins)
Slew rate	>6°/minute
Telemetry	8 Mbps
Ground Stations	Kourou, Malindi
Nominal Lifetime	4 years

The LOFT Technologies

1. Large Area Silicon Drift Detectors

2. Capillary plates X-ray collimators

The Key to LOFT: low weight/power/volume per unit effective area

Capillary Plate Collimator (~3 kg/m²) Silicon Drift Detector $(~1.3 \text{ kg/m}^2)$ **Readout electronics** (~2.5 kg/m²) Mechanical support, Power Distribution, Interfaces, ...

The Large Area Silicon Drift Detector for LOFT

A heritage of the ITS of the ALICE experiment at the Large Hadron Collider (CERN)

INFN Trieste, in collaboration with Canberra Inc., designed, built, tested and calibrated 1.5 m² of SDD detectors, now operating since ~2 years.

187

LOFT Baseline

Thickness	450 <i>μ</i> m
Monolithic Active Area	76 cm ²
Drift time	<5 µs
Single-channel area	0.3 cm ²

Mature Technology. High TRL. Proven mass production.

The Working Principle of the LOFT Si Drift Detector

The Working Principle of the LOFT Si Drift Detector

The Working Principle of the LOFT Si Drift Detector

The development of LOFT Si Drift Detector

Si Drift Detectors and Capillary Plate Collimators

The LOFT capillary plate collimator at Univ. of Leicester

The MIXS-C model during vibration tests at RAL

Courtesy G.W. Fraser, Univ. of Leicester

Critical Mission Parameters Linked to Calibration

- Background / Radiation Environment
- Source Confusion
- Absolute Pointing Knowledge and Stability
- Degradation of Energy Resolution due to Radiation Damage

Critical Mission Parameters Linked to Calibration

Background / Radiation Environment

Critical Items for Calibration

Critical Parameters for Ground and in-Flight Calibration

- Effective area as f(Energy) (10 m² @ 8 keV)
- Energy resolution as f(Energy) (@ 6 keV: Singles 200eV, Overall 260 eV)
- Knowledge of energy scale (1e-2), Temperature effects
- Collimator performance as f(Angle, Energy) (measured up to 50 keV)
- Dead time, pileup effects as f(Countrate)

LOFT Web Page

http://www.isdc.unige.ch/loft

- Mission info
- Simulation Tools
- Project status updates
- Public Outreach

2nd LOFT Science Meeting: 24-27.9.2012 Toulouse

LOFT International Support Team:

LOFT is a simple mission, relying on solid hardware heritage, offering both breakthrough and observatory science.

LOFT is one of the 4 mission concepts selected by the ESA Advisory Structure as a candidate in CV-M3

http://www.isdc.unige.ch/loft

Thank you