Swift-XRT Calibration Update

Andy Beardmore and the Swift-XRT calibration team
Swift Status

- Swift has now been operating for 8+ years
- Makes 35000 slews per year (>99% within 3' accuracy; ~40 targets per day)
- Approaching 750th Swift detected GRB
- Observing time: <20% GRBs, 35% Gl/fill-ins, 30% TOOs (>850 per year), 2% Cal
 - Cal: 300 ks every 6 months; 150 ks on Tycho for trap mapping
- XRT CCD temperature range: -70C to -52C (97% of time below -54C, mean of -60C)
Swift-XRT CCD

- e2v CCD-22 detector (developed for EPIC MOS camera on XMM-Newton)
- Operated in Photon Counting (PC; $\Delta t=2.5s$) and Windowed Timing (WT; $\Delta t=1.77ms$) mode
- 4 55Fe corner sources continuously illuminate CCD corners, used to monitor CCD performance
- Spectral resolution at launch: FWHM = 145 eV at Mn K-α (5.895 keV)
- Swift in Low-Earth orbit and exposed to high flux of protons during SAA
Gain and CTI Evolution

- Gain/CTI measured from corner sources (-60°C)

![Graphs showing CS3 gain, FWHM, and CTI evolution with Vss=0V and Vss=6V]
Trap Mapping

- Tycho SNR observed ~ 6 monthly
- Si-Kα used to map the location and depth of the deepest traps (PC), column offsets (WT)

- PC: 7x15ks
- WT: 3x15 ks
Trap mapping (cont'd)

- Energy dependent trap offsets for both PC & WT (modelled as broken powerlaw)
- Temperature dependent trap depths for PC (as thermal noise fills traps when CCD is warmer)
Recovered Resolution

![Graph showing Silicon FWHM vs. Year]

- WT observed
- PC observed
- WT corrected
- PC corrected

FVHM

YEAR

2007 2008 2009 2010 2011 2012 2013
Mirror Area Revisited

- New mirror area calculations, including a hydrocarbon (CH$_2$) overcoat
- Reflectivity increases with thickness of CH$_2$ layer
- High energy (> 4keV) area turns over faster as the microroughness increases

Micro-roughness (rms):
- solid = 4.5 Å
- Dashed = 6.0 Å
Mirror Area Revisited

- New mirror area calculations, including a hydrocarbon (CH$_2$) overcoat
- Reflectivity increases with thickness of CH$_2$ layer
- High energy (> 4keV) area turns over faster as the microroughness increases

Micro-roughness (rms):
- solid = 4.5 Å
- Dashed = 6.0 Å
Filter Transmission Revisited

- Fit to LU and manufacturer filter data using new polyimide and aluminium mass absorption coefficients (from M. Barbera, Palermo)
ARF – comparison

- ARF comparison – CALDB (v014) and new preferred mirror area * filter transmission

![Graph showing ARF comparison](image)
• CCD22 simulator code described last IACHEC
• Use to generate PC and WT mode RMFs
 – PC : 2D, full-frame readout ($\Delta t=2.5s$)
 – WT : 1D readout ($\Delta t=1.77ms$) → 10 rows at a time clocked into serial register
• Matched the line broadening to data (2005 & 2007) by increasing the electron noise and CTI
 – EN = 6.75 e$^{-}$ (2005), 8.75 e$^{-}$ (2007 V_{ss} = 0V) and 7.5 e$^{-}$ (2007 V_{ss}=6V)
 – CTIs,$p =4e-6$, 8e-6 (2005); 3.5e-6 (2007, both V_{ss}=0V and 6V)
• V011 RMF

SNR E0102 (Swift–XRT, 2005 May)
black: WT grade 0, red: PC grade 0

-normalized counts s⁻¹ keV⁻¹

ratio

Energy (keV)
RMF (cont'd)

- New 2005 Vss=0V RMF
RMF (cont'd)

- Improved LEO door source data modelling (Vss=0V)

![Graphs showing data and model comparisons for different grades and energies.](image)
Electrode Structure revisited

Original Electrode Structure

\[T_1 = \exp(-0.1 \mu_{\text{SiO}_2}) \]
\[T_2 = T_1 \exp(-0.1 \mu_{\text{Si}_3\text{N}_4}) \exp(-0.4 \mu_{\text{SiO}_2}) \]
\[T_3 = T_2 \exp(-0.25 \mu_{\text{Si}}) \exp(-0.3 \mu_{\text{SiO}_2}) \]
\[T_4 = T_3 \exp(-0.25 \mu_{\text{Si}}) \exp(-0.4 \mu_{\text{SiO}_2}) \]

Are the SiO2 and Si layers thick enough?
Electrode structure (cont'd)

- E0102 WT data from 2005 used to refine the electrode transmission model
Electrode structure (cont'd)

- E0102 WT data from 2005 used to refine the electrode transmission model
Electrode Structure (cont'd)

- Blue - QE ratio new electrode / original electrode
 - Base SiO$_2$ layer : 0.1 → 0.15 micron
 - Si layers : 0.25 → 0.35 micron
- Green - QE ratio new (OE area -5%) / original
QE (Vss=0V)

• Comparison with (Astrosat) CCD Lab QE

![Graph showing QE vs energy for different grades of SW6 and two files: swxpc0to12s0_20010101v012.rmf and swxpc0s0_20010101v012.rmf.](image)
Vss=0V Effective Area tests

- 2 RMFs * 3 mirror area files * 3 filter files
- Tested on
 - RXJ1856 (WT, PC)
 - Clusters (PC, 90-150 arcs)
 - Abell 1795 (Gal NH=0.012e22 cm^2)
 - Abell 2029 (Gal NH=0.033)
 - PKS0745-19 (Gal NH=0.42)
 - H1426 (Gal. NH=0.012) (PC, XMM 2005-Jun)
 - SNRG21.5 (NH=3.1) (PC)
 - 3c273 (Gal. NH=0.017) (WT, XMM 2005-Jul)
 - Mkn421 (Gal. NH=0.019) (WT, MOS1T 2006-Dec)
Test results

- Favourite combination has
 - RMF: dd=22/35 micron, ff=48/35 micron, Na=2.5, s=1, Lf=250 micron, Ls=0.75 micron
 - Mirror area: CH$_2$ thickness=70 Å, roughness=4.5 Å
 - Filter: Polyimide thickness=2122 Å, Al thickness=473 Å
- Became latest Vss=0V CALDB release (2013-Mar-15)
Recent WT RMF Development

- Current WT RMFs generated assuming uniform illumination of the CCD
- Point source illumination can produce slightly different redistribution properties depending on the source position w.r.t. the 10-row binning boundaries
 - Source on the 10-row binning boundary suffers more event splitting (and more redistribution) than one 5 pixels away.
- NH dependent
 - kicks in when NH above a few x 10^{21} cm$^{-2}$
Absorbed powerlaw ($\Gamma=2$) folded models
• Source at DETY=300.5 (black) and 305.5 (red)
• Grade 0-2 (solid), grade 0 (dashed)
Preliminary $V_{ss}=6V$ RMF

- After the substrate voltage change, expect a drop in QE at high E due to a reduction in depletion depth
 - confirmed with SNRG21.5 data
- Reduction in QE can be modelled by decreasing the depletion depth to ~20 micron.
 - However, this broadens the kernel (due to more field-free interactions) below Si edge \rightarrow slight higher NH for $g0-12$.
Summary

- Gain files updated 2013-Mar-15 (~6-12 monthly)
- New Vss=0V RMF/ARF released 2013-Mar-15
- New Vss=6V RMF/ARF needs further refinement and testing
 - Try and reduce the g0-12 redistribution shoulder below Si edge
 - Need to handle loss of QE at lowest E due to traps?
- Expect WT redistribution to vary with point source location (DETY) on the CCD
 - Investigating how best to handle this
Test results

- 3-5% residuals with high S/N Mkn421 data
Test Results

- RXJ1856: CF=1.07 WT (g0), 0.89 PC (g0)
- Clusters (PC):
 - kT~1-2 keV higher than PN/MOS (more in-line with Chandra ACIS). NH similar to CALDB
- Mkn421 (WT) : Gamma ~ 0.1 harder than MOS1, NH in agreement
- H1426 (PC) : slightly less curvature than MOS1; 0.1 harder than PN, NH in agreement
- 3c273 (WT) : Gamma, kTbb in agreement with MOS1, Gamma ~0.05 harder than PN
- SNRG21.5 (PC) : made to agree with IACHEC average!