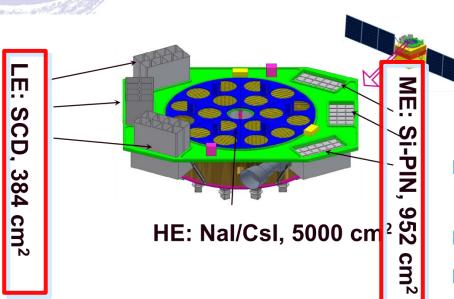


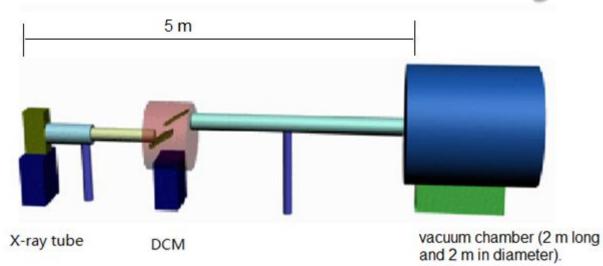
Progress in building an X-ray facility for energy calibration of HXMT


Yu-Peng Chen 陈玉鹏 <u>chenyp@ihep.ac.cn</u> on behalf of Calibration Team of HXMT, institute of high energy physics Chinese Academy of Science, Beijing, China Conference on IACHEC 2013

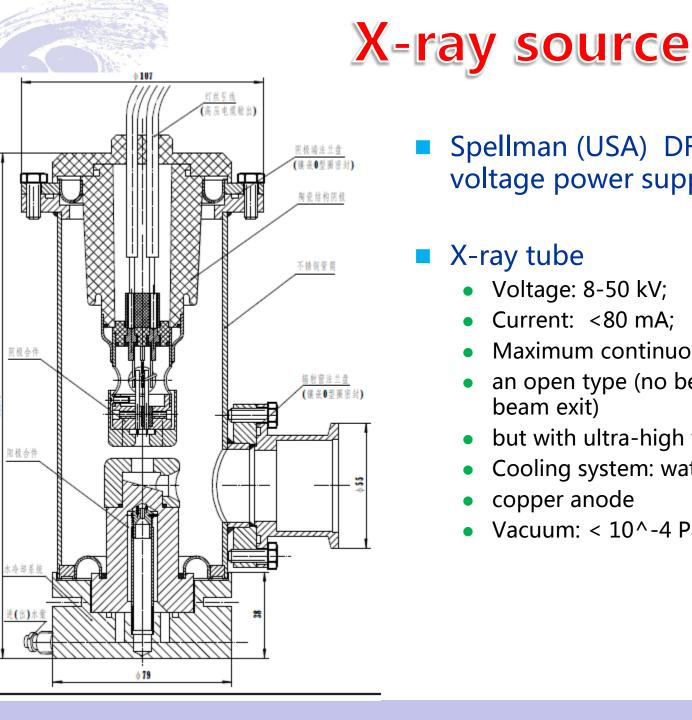
Aim

Physical design

- X-ray tube
- DCM
- Vacuum chamber
- Simulation by XOP & shadow
- Time Schedule
 - Current status of the facility

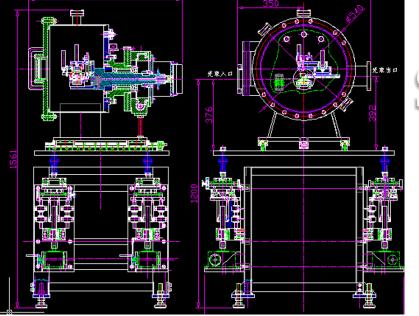

Energy range	LE: 1-15 keV; ME: 5-30 keV
Energy	LE: <8% @ 6 keV
resolution	ME: <15% @ 20 keV

The facility is developed for the Energy Calibration for the detector of HXMT/LE & HXMT/ME


- monochromatic X-ray beam with fixed exit
- Energy range : 1-30 keV ;
- Energy resolution : dE/E<1%@1-30 keV</p>
- Spot size : >1mm*10mm (distance between X-ray tube and test chamber : 5m)
- Flux at the chamber entrance : ~100 cts/s/cm^2;

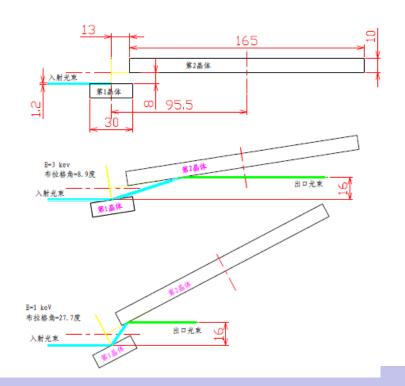
Aim

Architecture of Facility


- X-ray tube + double crystal monochromator
 - X-ray tube: 3 kW, 5-50 kV
 - Switchable Double crystal monochromator: KAP(100), Si(111)
- the X-ray source and the chamber are connected with a tube of 10 cm in diameter.
- X-ray source, tube and chamber are kept under high vacuum, at a pressure of ~10-4 Pa, by means of 3 independent pumping system.

Spellman (USA) DF3 series X-Ray high voltage power supplies

X-ray tube

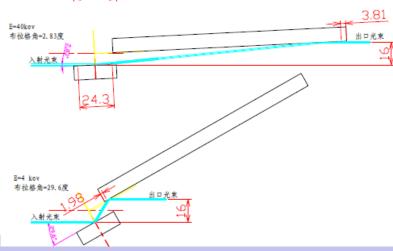

- Voltage: 8-50 kV;
- Current: <80 mA;
- Maximum continuous power: 3 kW;
- an open type (no beryllium window in the beam exit)
- but with ultra-high vacuum gate valve
- Cooling system: water flow.
- copper anode
- Vacuum: < 10⁻⁴ Pa

Switchable DCM

2 possible choices of crystals: Si (111),KAP (100)

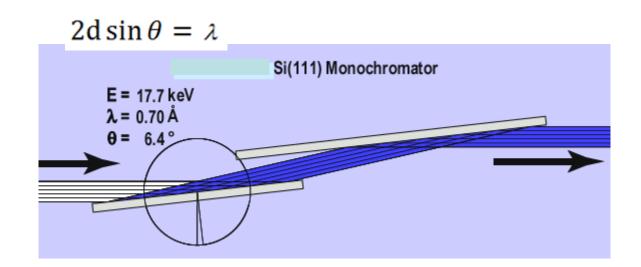
晶体材料KAP(100)

 13
 165


 市拉格角-0度
 第2晶体

 火射光束
 第1晶体

 0
 95.5

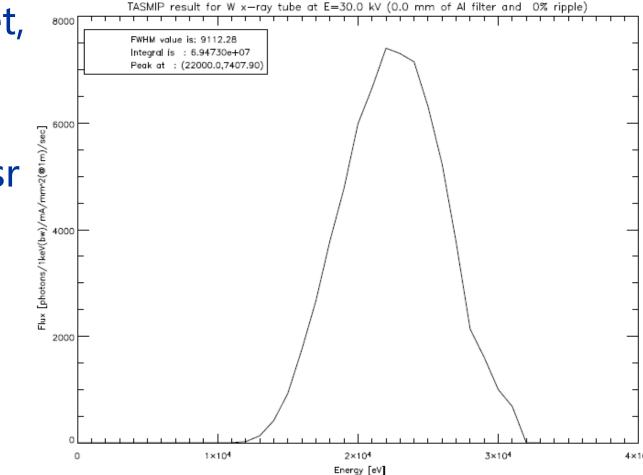

 30
 30

晶体材料Si(111)

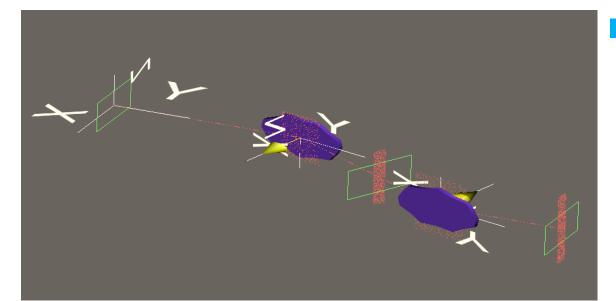
Physical design : energy depend on the incidence angle

KAP (100): d=13.316 angstrom for 1-3 keV
 Si (111): d=3.138 angstrom for 3-30 keV

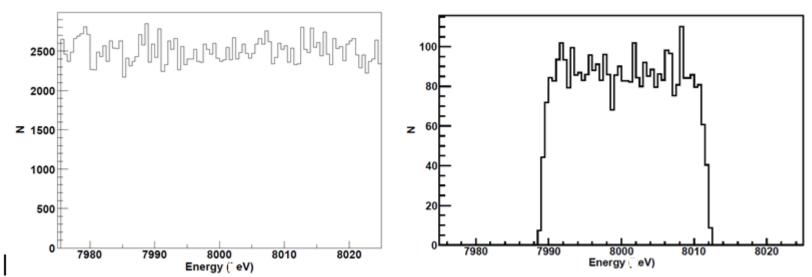
Physical design : energy resolution


$$2\operatorname{d}\sin\theta = \lambda \implies \frac{\delta E}{E} = \frac{\delta\theta}{\tan\theta}$$

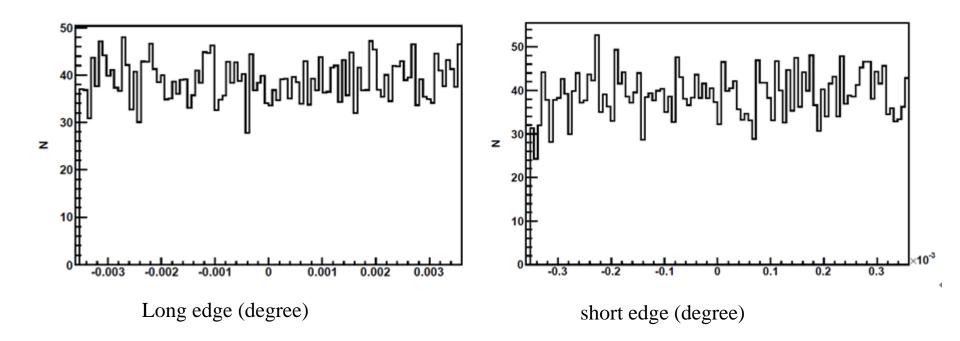
- A set of collimators limits the divergence of the X-ray beam. The divergence of the beam influences the energy width of the monochromatized beam.
- Imm*10mm (distance between X-ray tube and vacuum chamber : 5m)


E(keV)	1	2	3	4	5	10	20	30	40
θ (degree)	27.7	13.4	8.9	29.6	23.29	11.4	5.65	3.77	2.83
SE (keV)	0.0004	0.002	0.004	0.002	0.002	0.01	0.04	0.09	0.16
$\frac{\partial E}{E}$	0.0004	0.0008	0.001	0.0003	0.0005	0.001	0.002	0.003	0.004

Simulation by XOP & shadow X-ray tube


Tungsten target, 30W, 30 kV,
7E10cts/s/sr ,
6E9 cts/s/keV/sr
20 keV

Simulation by XOP & shadow DCM: reflection efficiency



reflection efficiency~0.04

Simulation by XOP & shadow DCM: flux distribution on spot

Result: spatial distribution is well

Simulation by XOP & shadow results

 If we use 3 kW X-ray tube, the spot size is 1mm*10mm@5m we can get:
 100cts/s@20keV (1000cts/s/cm2, dE/E~0.002) Under ideal circumstance !!

assignment	time
Physical design	2012.062012.09
Subsystem design	2012.102013.02
The overall detailed design	2013.032013.04
sign contracts Buy equipment	2013.042013.06
build and install	2013.072013.08

Current status of the facility

- Test chamber: finished
- Signed contracts :
 - X-ray tube
 - X-Ray high voltage power supplier DCM

difficult points

- Standard detector (efficiency)
- Beam monitor (test, find the small size beam)
- Co-alignment of the subsystems
- Under the helps/assistance of the PANTER facility

summary

- The facility is developed for the Energy Calibration for the detector of HXMT/LE & HXMT/ME
 - monochromatic X-ray beam with fixed exit
 - Energy range : 1-30 keV ;
 - Energy resolution : <1%@1-30 keV
 - Spot size : >1mm*10mm
 - Flux at the chamber entrance ~100 cts/s/cm^2
- The facility is to be completed in August 2013

Thanks for your attention

summary

- The facility is developed for the Energy Calibration for the detector of HXMT/LE & HXMT/ME
 - monochromatic X-ray beam with fixed exit
 - Energy range : 1-30 keV ;
 - Energy resolution : <1%@1-30 keV
 - Spot size : >1mm*10mm
 - Flux at the chamber entrance ~100 cts/s/cm^2
- The facility is to be completed in August 2013