Galaxy Clusters WG Review of WG activities and action items

IACHEC meeting 2013, Theddingworth

1) HIFLUGCS extension

2) Multi-Mission Study

3) SZ, Grav lensing

Today 9:00-12:30 and possibly continued in the afternoon

4) NuSTAR5) Suzaku paper

1) HIFLUGCS extension

G. Shellenberger et al.

IACHEC meeting 2013, Theddingworth

- * Stack residuals:
 - We use EPIC-pn as a reference
 - For instrument I we calculate the median and the mean absolute deviation of the ratio

$$R_{I \text{ over } pn} = \frac{data_{I}}{model_{pn} \otimes resp_{I}} \times \frac{model_{pn} \otimes resp_{pn}}{data_{pn}}$$

The latter term corrects for deviations btw. pn model and pn data which cannot be produced by the model (no point in comparing other data with a model which does not fit pn data) * To account for different sizes of the extraction regions due to CCD gaps, we scale the spectra with the BACKSCAL value:

$$R_{I \text{ over } pn} = \frac{data_{I}}{model_{pn} \otimes resp_{I}} \times \frac{model_{pn} \otimes resp_{pn}}{data_{pn}} = \frac{BACKSCAL_{pn}}{BACKSCAL_{I}} \times \frac{data_{I}}{model_{pn} \otimes resp_{I}} \times \frac{model_{pn}}{data_{pn}} \otimes resp_{pn}}{data_{pn}}$$

- * Linear scaling not exact, because brightness drops with radius
- * BACKSCAL not correctly calculated for ACIS-I? CCD gaps and bad pixels not excluded from BACKSCAL?
- * Larry has a tool for it. Gerritt should learn this. TASK1

Suggestions for Gerrit

- * Group the data according to
 - Epochs
 - Possible time dependence of effective area uncertainties. Multiple observations of same objects useful. Are there enough?
 - Patterns
 - No effect in EPIC-XCAL work, though
 - #XMM_EM(P) v.s. flag==0
 - flag==0 excludes more area. BACKSCAL does not fully recover the lost flux compared to #XMM_EP
 - Filters
 - No effect in EPIC-XCAL work, though

Suggestions for Gerrit

🛪 tbabs

2) Multi-Mission Study

J. Nevalainen, L. David, S. Snowden, A. Beardmore, K. Kettula

IACHEC meeting 2013, Theddingworth

Chandra/XMM

- * There are cross-correlation problems between XMM-Newton/EPIC and Chandra/ACIS (Nevalainen et al., 2010):
 - ACIS 2-7 keV band flux ~10% higher
 - 2-7 keV band effective area shape calibration OK
 - At 2.0- 1.0 keV pn effarea underestimated or ACIS effarea overestimated by 20%

ACIS-S subsample

New cans of worms

- We included now Swift/XRT, Suzaku/XIS and ROSAT/PSPC into the comparison work
- * We use 3-6 arcmin annulus for the extraction of the spectra, so that
 - we minimise the scatter from the cool core (we are wasting data, but this enables the comparison with Suzaku which has a larger PSF). Perhaps OK to use center?
 - we minimise the PSF scatter from and to our extraction region (again, dictated by Suzaku)
 - we stay in the bright part of the clusters and thus minimise background systematics (background a few% of the cluster emission)

New cans of worms

- * Would be ideal to use a combined mask using the info of the bad pixels and CCD gaps of all instruments, but complicated. At this point areas vary somewhat btw the instruments
- Point sources are variable. We exclude from each instrument the minimal number of point sources required to minimize the point source emission in the 3-6 arcmin annulus

New cans of worms

- * For selecting the observations common with the above five missions, we used these criteria:
 - The total exposure time must be at least 10 ks to obtain good enough statistics. Rather minimum number of counts.
 - The center of the cluster must not be too much offset (< 3 arcmin) from the center of FOV so that we don't fold in instrument effects which are different between the central and outer regions of the FOV (e.g. vignetting).

Sample info

	A1795			A2029			Coma		
Center	207.22083,	26.5902		227.7342,	5.7446	1	94.9447, 27	.9326	
	obsid	off-axis	exp	obsid	off-axis	exp	obsid	off-axis	exp
	254.254	(arcmin)	(ks)		(arcmin)	(ks)		(arcmin)	(ks)
XIS	800012010	0.7	13	804024010	0.5	8	801097010	1.9	179
XRT	0003518400	2 3.0	13	000351870	04 2.0	26	000351720	01 1.9	10
ACIS	5289	0.1	15	6101	0.0	10	13996	1.1	125
EPIC	0097820101	0.2	34	055178040	1 1.0	47	030053030	1 0.5	31
PSPC	RP800105N0	00 0.5	36	RP800249N	100 0.4	13	RP800005N	100 2.3	21
	RP800055n0	00 1.8	26						

* PKS0745-19 also observed by all, but XMM obs badly flared and needs extra care

Preliminary results

(ROSAT and Suzaku TBD)

- * Swift/pn similar as ACIS/pn:
 - XRT 2-7 keV band flux ~10% higher
 - 2-7 keV band effective area calibr. OK
 - At 0.5 keV pn effarea underestimated or Swift effarea overestimated by 10-20% bout 2 1.0 Data/EPIC-0.9 A1795 A2029 0.8 Coma 0.5 5 Energy (keV)

'IC-pn (flog==0)

Is pn a freak?

Not quite: Suzaku-XIS / pn soft band

XIS/pn do not show the steep feature btw 1 and 2 keV (Kettula et al, 2013)

Conclusions

- XMM-Newton-EPIC and Suzaku-XIS in rough agreement
- Chandra-ACIS and Swift-XRT in rough agreement
- ★ The two pairs in clear disagreement →
- * Grand Calibration Scheme (M. Guainazzi)