Cluster mass, temperature and pressure from X-rays, gravitational lensing and Sunyaev-Zeldovich effect as a possible calibrators

J. Nevalainen, A. Mahdavi, D. Eckert

IACHEC meeting 2013, Theddingworth

New fields of worms

- Usually cross-calibration of effective area of an X-ray instrument means a comparison of spectral models derived using different instruments for the same source
- * We explore here a new method: A comparison of
 - physical quantities: 1) total mass and 2) thermal pressure derived with an X-ray instrument

with

 the same physical quantities derived using different methods and wavelengths

+ A possible agreement yields confidence on the X-ray calibration accuracy

A possible disgreement can be due to uncertainties of calibration and/or of the cluster physics

1) Total mass of a cluster of galaxies

HYDROSTATIC X-RAY METHOD

- * The intracluster gas pressure gradient pulls gas particles away from the center
- * The gravity pulls the gas particles towards the center
- * In hydrostatic equilibrium the forces due to gas pressure gradient and gravity are in balance, matter is not moving

HYDROSTATIC X-RAY METHOD

Gravitational lensing

- ★ Gravitational lensing also yields the total mass M_{tot} for clusters of galaxies
- Assuming that gravitational lensing is bias-free !!!, comparison of X-ray total masses obtained using different instruments can be used to judge which gives T right, and thus has the effective area shape accurately calibrated
- Mahdavi et al: The Canadian Cluster Comparison Project (CCCP), 50 clusters
- Gravitational lensing mass from Hoekstra et al. (2012), which contains a weak lensing analysis of CFH12k and Megacam data from the Canada-France-Hawaii Telescope
- * Most observed with both XMM and Chandra

Using XMM data (pn or MOS?), CCF:s from Jan 2012, M_{grav} and M_{X-ray} agree:

- Since Chandra gives higher temperatures, the hydrostatic X-ray masses derived from Chandra data are ~15% bigger than XMM values
 - → Chandra X-ray mass 15% bigger than M_{grav}
- This indictes that
 XMM is accurate
- Collaboration with
 Mahdavi going on

2) Sunyaev – Zeldovich effect

- * Sunyaev-Zeldovich effect measured with Planck within r_{500} yields electron pressure P(r_{500})
- * P(r) distribution modeled with universal profile (Arnaud et al. 2010) and scaled to $P(r_{500})$
- Electron density n_e(r)
 derived using ROSAT
 PSPC
- Electron temperature
 profile derived using
 P(r) = k n(r) T(r)

- * Electron temperature also derived via X-ray spectroscopy
- Collaboration with Eckert: XMM-Newton / Planck+ROSAT comparison of temperatures for A1795, A2029, A3112 and A85 (A2204 TBD) at 0.2-0.4 r500

- In 0.5-7.0 keV band XMM gives too small temperatures
- ★ ACIS temperatures 10-20% higher → ACIS would match Planck+ROSAT well → This indictes that ACIS is accurate

Conclusions

- * XMM is better than Chandra based on X-ray / Grav lens masses
- Chandra is better than XMM based on SZ/X-ray thermal pressure