Production of HXMT calibration Files

8th IACHEC meeting LI Xiao-bo Institute of High Energy Physics, CAS

Outline

- 1. Hard X-ray Modulation Telescope(HXMT)
- 2. Flow of calibration data files
- 3. Calibration parameters for energy response matrix
 - Energy scale
 - Energy resolution
 - Efficiency
- 4. Monte carlo simulation based on Geant4
- 5. Performance of HXMT detectors in electronics test
- 6. Summary

25-28 March 2013 IACHEC

ME

高能准直器 (内嵌在轨标定

中能探测器

机箱

顶面屏蔽

En-

侧面屏蔽

低能探测器下机箱

• Scientific Objectives:

- > X-ray all sky survey
- pointing obs. of X-ray source
- Orbit: circle, 550km
 - orbital period: ~90mins
 - orbital inclination: 43 degree
- Instruments:
 - HE: NaI(TI)/CsI(Na), 5000cm², 20-250keV;
 - ME: Si-Pin, 952cm², 5-30keV;
 - LE: CCD, 384cm², 1-15keV

1. HXMT

2. Flow of calibration data files

- Inputs:
 - Mass model of instruments and environment
 - Some commands to configure the simulation
- Outputs:
 - Raw event files(ROOT files)
- External dependencies:
 - GEANT4—toolkit for MC of particle interactions with matter from CERN
 - ROOT– Data analysis package from CERN.

Continue:

specSim

– Inputs:

- Raw event root files
- Calibration parameters from experiment data

– Outputs:

- Energy response curve and efficiency
- FITS file, like rmf, arf.
- External dependencies:
 - ROOT– Data analysis package from CERN.
 - CCFITS—FITS data file I/O

• rspGen

- Inputs:
 - FITS file from CALDB
 - Some specific FTOOLS developed by HXMT group to generate the RMF of observe ID.
- Outputs:
 - Applicated RMF files
- External dependencies:
 - CCFITS—FITS data file I/O
 - FTOOLS of CALDB related.

3. Calibration parameters

- Energy scale and resolution can be gained through radioactive sources and X beam experiments on ground.

²⁴¹Am@ HE

- 59.5 keV full energy peak fit:
- The mean and sigma of full energy peak are influenced by the fit range and fit function which we used to describe the background.
- We change the different fit conditions ten more times and get the value and error of full energy peak and its sigma.

Fitted FWHM function	Literature		\overline{R}^2	
	Detector	References	Nal	LaBr ₃
FWHM(E) = a + bE	Ge	[3,21]	0.98011	0.99301
$FWHM(E) = a + b\sqrt{E}$	Ge	[3]	0.99534	0.99904
$FWHM(E) = a \cdot E^b$	NaI	[15]	0.99310	0.99884
$FWHM(E) = a + b\sqrt{E + cE^2}$	Nal, LaCl ₃	[16-18]	0.99581	0.99900
$FWHM(E) = a\sqrt{E} + bE$	Nal, LaBr ₃	[3,19]	0.99138	0.99873
$FWHM(E) = a\sqrt{E}$	NaI	[20]	0.98729	0.99850
$FWHM(E) = \sqrt{a+bE}$	Nal, Ge	[3,21]	0.97922	0.99923
$FWHM(E) = \sqrt{a + bE + cE^2}$	Ge	[3,21]	0.91769	0.99917
$FWHM(E) = a + bE + cE^2$	Nal, LaBr ₃	[22]	0.99713	0.99979
$FWHM(E) = a + b\sqrt{E+c}$	Nal, LaBr ₃	This study	0.99492	0.99922
$FWHM(E) = a + bE + cE^2 + d\sqrt{E}$	NaI, LaBr ₃	This study	0.99699	0.99980
$FWHM(E) = a + bE + c\sqrt{E}$	Nal, LaBr ₃	This study	0.99550	0.99904
$FWHM(E) = aE + bE^2$	Nal, LaBr ₃	This study	0.99695	0.98146

- Fit function for the energy-channel relation:
 - C=K*E+con, nonlinear etc.
- The error of energy scale and resolution can be derived through the error propagation .

- One method is to use calibrated radioactive sources
 - The reference activities were provided in a calibration certificate by the supplier of the radioactive sources.
 - The activity at the day of measurements were calculated by taking into account the time elapsed since the calibration reference day.

$$\varepsilon(E) = \frac{N}{A * t * p(E) * T(E) * exp - (\mu_{air} * d_{air}) * \Omega/4\pi}$$

- N is the detected events, A is the activity of the source, T(E) is the transition probability of entrance window, p(E) is branch ratio.
- For HE, N must meet the energy cut(20—250 keV) and pulse width cut to get NaI-like events. For ME and LE, N should meet the energy cut.
- Error of efficiency can be estimated.

$$\delta \varepsilon_{\exp} = \varepsilon_{\exp} \sqrt{\left(\frac{\delta N}{N}\right)^2 + \left(\frac{\delta A}{A}\right)^2 + \left(\frac{\delta p}{p}\right)^2}$$

25-28 March 2013 IACHEC

4. MC simulation based on G4Parameters for MC tuning:

 Output hit information of MC:

💸 Al Edep_х	🦄 Al.Edep_y	💸 Al Edep_z	🔖 Alitot Edep	እ Cəl.Edap_ж
🔖 Col. Edep_y	💸 Col.Edep_z	🔖 CalitatEdep	🔖 Nal. Edep_и	🦄 Nal.Edep_y
🔖 Nal. Edep_z	🦥 Nalitot Edep	🔀 event_info	🔀 run_info	🦄 vertex.ke
🗽 vertex.n_particles	🔖 vertex.pdg_code	🗽 vertex poix	🔖 ventex.poly	🦄 vertek polz
🗽 vertex.pκ	🗽 vertex.py	🗽 vertex pz	🗽 vertex.t0	🦄 vertek vketot
🔖 vertex.xD	🐚 vertex.yű	🄖 vertex.20		

Visualization of HXMT detectors

SCD detectors of LE in one box:

Si-Pin detectors of ME in one box:

Collimators of ME:

Collimators of LE:

MC Spectrum of HE detector

HE detector visualization:

Pulse width spectrum:

25-28 March 2013 IACHEC

MC energy spectrum vs Data

- The difference between MC spectrum and data decides the precision of the energy response.
- Experience to tune the MC parameters to reduce the difference .
- How big system error will be produced if we have several percent difference between the MC spectrum and data?

Efficiency:

RMF:

5. Performance of HXMT detectors now

Energy spectrum of 6 detectors in one group.

One color represents one hour.

Pulse width spectrum

test.

time(h)

²⁴¹Am source of in-orbit

calibration detector was used

on one PMT in the 100 hours

PMT0

25-28 March 2013 IACHEC

Time interval distribution

- Time Interval distribution of 6 HE detectors in one group.
- Time used to process one signal needs 12us.

All Events, including GPS second events, physical events and radioactive events.

Physical events or radioactive events

6. Summary

- Elaborate calibration experiments will be done in IHEP soon.
- Detector simulation:
 - Simulation software
 - Preliminary MC result vs experiment data
 - Long-term work to tune MC parameters
- Calibration parameters and their accuracy
 - − Energy scale, resolution and efficiency ✓
 - Timing related
- CALDB
 - Design the CALDB of HXMT \checkmark
 - Calibration software for users

Thank you for your attention!