IACHEC Contamination WG Summary

Eric D. Miller (MIT)

IACHEC 2014

Membership

Eric Miller (chair, Suzaku, Astro-H) Andy Beardmore (Swift) Vadim Burwitz (eROSITA) Larry David (Chandra) Tadayasu Dotani (Astro-H) Megan Eckart (Astro-H SXS) Michael Freyberg (eROSITA) Terry Gaetz (Chandra) Catherine Grant (Chandra) Kenji Hamaguchi (Suzaku) Maurice Leutenegger (Astro-H SXS) Herman Marshall (Chandra) Steve O'Dell (Chandra) Paul Pluncinsky (Chandra) Steve Sembay (XMM-Newton EPIC) Doug Swartz (Chandra) Masahiro Tsujimoto(Suzaku, Astro-H) Cor de Vries (XMM-Newton RGS) Qazuya Wada (Suzaku)

12 out of 19 members present

Topics

- comparison among instruments and missions
 - chemical composition
 - time dependence
 - spatial dependence (micron to cm scales)
 - temperature dependence (where is the coldest surface?)
 - environmental dependence (orbit)
- mitigation for current instruments
 - celestial monitoring targets
 - effects on calibration and science results
 - "bake-out" procedures
- mitigation for future instruments
 - design (cold traps, contamination blocking filters)
 - procurement
 - ground procedures
 - ground testing and calibration
 - on-orbit monitoring

Contamination WG Telecon 2014-03-31

🖉 Edit 🛛 🖂 Share

Section 4 Added by Eric D Miller, last edited by Eric D Miller on Apr 01, 2014 13:50 (view change)

- Agenda
 - short (5 minute) summaries from participants about:
 - contamination status of current instruments
 - Steve O. Chandra ACIS
 - Herman Chandra ACIS
 - Steve S. XMM EPIC-MOS and pn
 - Eric Suzaku XIS
 - Andy Swift XRT
 - anyone else?
 - plans for future instruments
 - Michael eROSITA
 - Astro-H?
 - anyone else?
 - discussion about how to structure the 2 x 1.75 hour WG sessions at upcoming IACHEC, which could include:
 - several longer (20 min) presentations for current and future instruments
 - more from Steve S. about combining contamination and response calibration
 - best methods to monitor time, spatial, chemical variations
 - best references for absorption data
 - hands-on cross-calibration? (e.g. real time spectral fitting)

Monday, 12 May, afternoon session

14:00-15:45: Contamination WG: Foxes Den

- H.Marshall, "Chandra ACIS contamination monitoring"
- D.Swartz, "Simulations of Chandra ACIS contamination migration"
- S.Sembay, "Contamination on the EPIC-MOS detectors"
- E.Miller, "Contamination on the Suzaku XIS"
- A.Beardmore, "Constraints on contamination on the Swift XRT"

Tuesday, 13 May, afternoon session

16:15-18:00: Contamination WG Foxes Den Room

- M.Leutenegger, "Contamination mitigation on the Astro-H SXS"
- V.Burwitz, "Contamination mitigation on eROSITA"

Herman LETG/ACIS Fit Results

Herman

Chandra ACIS

Contaminant Summary

- It's still growing: Why? Filter is colder? S/C hotter?
- Spatial variations are time-dependent
 - CCD/housing temperature difference?
 - N and O don't match C and F
 - S3 matches S2 mostly
- Composition is time-dependent
 - Two components implicated, one is C-rich
 - ECS-LETGS disagreement unresolved
- Origin is unknown not in original form
 - No on-board substance has contaminant's CFO ratios
 - Radiation-induced organic fracturing?

Herman Marshall — ACIS contamination

Doug Chandra Contaminant Migration Model Results

Mass Column of Octadecane $(C_{18}H_{38})$ at t=9 years

low volatility (0.10) "deposition" dominated: central regions have highest accumulation because center views more nearby cold surfaces, pattern is asymmetric

high volatility (2.50) "thermal" (vaporization) dominated: warm central regions begin to clean, pattern follows local temperature distribution with more material near cold edges

Steve Sembay

Steve Sembay (sfs5@le.ac.uk) IACHEC 12/05/2014

Steve Sembay

Recalculation of contaminant with sas13.5.0 rmf:

plus latest observation

IACHEC 12/05/2014

Suzaku XIS Summary

 contamination level increased quickly (XIS after 3 months ~ ACIS after 6 years) now decreasing at 10% per year

Eric

- C:N:O changes with time started out C:O ~ 6 ~ DEHP, but not now
- decrease below C-edge: H? He? something else?
- A_{eff} (E > 0.7 keV) is good to ~5%
 A_{eff} (E < 0.7 keV) is (not) good to 10-50%, especially near edges

The 'Debris'

University of Leicester Andy B.

- Pre-launch vibration testing caused a small patch of 'debris' to appear on CCD – e.g. visible in Tycho trap-mapping observations
 - $\bullet~\sim$ 12 \times 5 pixels or \sim 28 \times 12 microns in size

- Unresolved questions can observed effects be caused by
 - slight gain variations
 - position of remnant w.r.t. bad-columns

APB (UoL)

XRT contamination?

epoch

Aperture assembly structure

Baseline plan is to operate DMS heater continuously to prevent sticking of contaminants

Dewar Main Shell (DMS) Temp: 290K

Outer Vapor Cooled Shield (OVCS) Temp: 155K (80K During Helium Servicing)

* Middle Vapor Cooled Shield (MVCS) Temp: 113K

Inner Vapor Cooled Shield (IVCS) A Temp: 28K

Joule-Thomson Shield (JTS) Temp 4.5K

Detector Assembly (DA) Temp: 1.3 K

Maurice

- Most likely contaminants are hydrocarbons from spacecraft
- Best targets for monitoring would have stable flux of C, N, O K shell lines, fill SXS field of view, provide ~ few counts/s/pixel – Galactic SNR?

eROSITA contamination mitigation in Orbit by design

IACHEC #9, May 13, 2014, Airlie Center, Warrenton, Virginia, USA

Vadim

Cleanliness control for eROSITA

CONTENTS

1. Ü	. ÜBERBLICK	
2. R	EFERENCES	4
2.1. 2.2. 2.3.	APPLICABLE DOCUMENTS REFERENCE DOCUMENTS ACRONYMS	
3. E	INLEITUNG	5
3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7.	VORAUSSETZUNGEN ANFORDERUNGEN AN DIE SAUBERKEIT. ANWENDUNG KONZEPT FÜR DIE REINIGUNG. VISUELLE INSPEKTION DER SAUBERKEIT DER OBERFLÄCHEN KONTAMINATIONSKONTROLLE WÄHREND DER VERSCHIEDENEN ARBEITSVORGÄNGE. REINRAUMBEKLEIDUNG	5 5 6 6 6 7 7
4. B	ESCHREIBUNG DER REINIGUNGSVERFAHREN	9
4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 4.10 4.11	ÜBERSICHT ÜBER DIE VERSCHIEDENEN REINIGUNGSVERFAHREN REINIGUNGSVORSCHRIFT A REINIGUNGSVORSCHRIFT B REINIGUNGSVORSCHRIFT A* REINIGUNGSVORSCHRIFT C REINIGUNGSVORSCHRIFT D. REINIGUNGSVORSCHRIFT D. REINIGUNGSVORSCHRIFT FÜR PLATINEN E REINIGUNGSVORSCHRIFT F REINIGUNGSVORSCHRIFT F REINIGUNGSVORSCHRIFT A** D. REINIGUNGSVORSCHRIFT D** 1. REINIGUNGSVORSCHRIFT G	
5. L	AGERUNG, VERPACKUNG UND TRANSPORT	
6.1. 6.2. 6.3.	REINIGUNG DES RÖNTGENBAFFLE REINIGUNGSVORSCHRIFTEN FÜR DEN REINIGUNGSAUTOMATEN IR 6001 MIELE EMPFOHLENE WISCHTÜCHER	

Summary eROSITA contamination mitigation on ground

- Goal:
 - To avoid contamination building up on CCD in orbit
- Detailed Documentation available:
 - for contamination mitigation
 - planning clean hardware activities
- Continuous:
 - Documentation of all activities needed
 - particle and molecular contamination monitoring
- Important: Outgassing / Baking ...
 ... of all components 110hrs at 60°C

Contamination WG Plan (1/3)

- standardize how we tabulate contamination
 - C,N,O,F, etc. in column density units (10¹⁸ cm⁻²)
 - useful for composition modeling
 - optical depth τ at some energy
 - C, O edges are useful for comparison
 - OVIII and other bright lines are practical
 - ~ contamination model independent
 - au converts directly into Aeff, useful for observers

Contamination WG Plan (2/3)

- A/I for all instruments (due 31 July 2014)
 - estimates of C,N,O,F, etc. columns (multiple epochs are fine)
 - estimates of τ @ C edge, O edge, I keV
- ACIS: Herman Marshall
- XMM EPIC MOS: Steve Sembay
- XMM EPIC pn: Steve Sembay
- XMM RGS:
- Suzaku XIS:
- Swift XRT:

- Steve Sembay
 - Michael Smith
 - Eric Miller
 - Andy Beardmore

Contamination WG Plan (3/3)

- legacy/heritage WG white paper
 - lessons learned for design and ground mitigation cf. eROSITA
 - lessons learned for first light targets, "zerocontamination" baseline
 - targets and observing strategies to detect and monitor contamination
 - primary role of this working group!