Constraints on Hydrostatic Mass Bias from the 400d WL Survey

Holger Israel Durham University 9th IACHEC meeting, 2014-05-14

Planck cosmology inconsistent with cluster counts

cluster masses scaled up by 1.45

Figure credits: A. Vikhlinin

Constraining cosmology with the 400d X-ray Survey

Vikhlinin et al. 2009 a,b

The 400d X-ray cluster survey

Chandra image of CL J0230+1836, z=0.80 (Vikhlinin+09a)

- Serendipitous cluster detections in all suited Rosat/PSPC pointings (~400 deg²): Burenin+07
- Chandra analysis, mass determination for cosmo-subsample of 36 X-ray luminous clusters z>0.35: Vikhlinin+09a
- Constraints of cosmological parameters comparing cosmo-subsample mass function to local clusters: Vikhlinin+09b

The 400d weak lensing survey

MMT/Megacam g'r'i' image of CL J0230+1836, *z*=0.80 (HI+12)

- Independent measurement of cosmosubsample cluster mass function
- Aiming at consistency check of
 Vikhlinin+09b cosmology constraints
- Providing mass-observable scaling relations for intermediate-*z*, few 10¹⁴
 M_{sun} cluster population Euclid and eROSITA are going to see.

The 400d Weak Lensing Survey

Weak lensing masses for first 8 clusters: HI+10,12

WL masses from profile fitting

•

۲

- Shear catalogue: KSB+ using STEP calibration from deep MMT *r*' stacks
- Selection of background sources using MMT g'r'i' colours where available
- Distance calibration <D_{ds}/D_s> using CFHTLS Deep fields as proxy
- NFW fit to tangential ellipticities in 0.2<r<5 Mpc range from Rosat centre.
 - Marginalising over Bhattacharya+13 *c*-*M* relation

Mass model for CL J1416+4446, HI+12

Hydrostatic Masses

- Direct calculation of integrated mass profile
- Inputs: Vikhlinin+09a Chandra T_X and density profile, using Vikhlinin+06 parametrisation
- Chandra calibration based on Vikhlinin+05
- Reiprich+13 temperature profile

 $T_{\rm X}(r) = T_{\rm X} (1.19 - 0.84 r/r_{200})$

• Integration to r_{500} taken from WL, or physical radius

$$M^{\text{hyd}}(r) = \frac{-k_{\text{B}}T_{\text{X}}(r)r}{\mu m_{\text{p}}G} \left(\frac{d\ln\rho_{\text{g}}(r)}{d\ln r} + \frac{d\ln T_{\text{X}}(r)}{d\ln r}\right)$$

HI+14 WL-hydro scaling relation

Hydrostatic Mass Bias

Hydrostatic bias weak, but could be mass-dependent

Scaling Relation $\eta - \xi$	Model	$c_{\rm NFW}$	Slope B	Intercept A	$b_{\rm MC}$ from Monte Carlo	$b = \langle \log \xi - \log \eta \rangle$	$\chi^2_{\rm red,M-M}$
$M_{500}^{\rm wl}(r_{500}^{\rm wl}) - M_{500}^{\rm hyd}(r_{500}^{\rm wl})$	default	<i>c</i> _{B13}	$-0.47^{+0.26}_{-0.25}$	$-0.02^{+0.07}_{-0.08}$	$0.00^{+0.14}_{-0.13}$ ($0.10^{+0.23}_{-0.18}$; $-0.10^{+0.17}_{-0.15}$)	-0.02 ± 0.04	0.52
$M^{\rm wl}(r_{\rm fix}) - M^{\rm hyd}(r_{\rm fix})$	$r_{\rm fix} = 600 \rm kpc$	<i>c</i> _{B13}	$-0.68^{+0.19}_{-0.21}$	-0.11 ± 0.05	$0.01^{+0.10}_{-0.07}$ ($0.12^{+0.16}_{-0.10}$; $-0.11^{+0.10}_{-0.08}$)	-0.02 ± 0.04	0.82
	$r_{\rm fix} = 800 \rm kpc$	<i>c</i> _{B13}	$-0.58^{+0.19}_{-0.21}$	-0.02 ± 0.04	$0.02^{+0.10}_{-0.07}$ ($0.12^{+0.18}_{-0.11}$; $-0.09^{+0.10}_{-0.08}$)	-0.02 ± 0.04	0.72
	$r_{\rm fix} = 1000 \rm kpc$	<i>c</i> _{B13}	$-0.52^{+0.19}_{-0.21}$	0.01 ± 0.05	$0.01^{+0.11}_{-0.08}$ ($0.10^{+0.20}_{-0.11}$; $-0.09^{+0.11}_{-0.09}$)	-0.03 ± 0.03	0.69
$M_{500}^{\rm wl}(r_{500}^{\rm Y}) - M_{500}^{\rm Y}(r_{500}^{\rm Y})$	default	<i>c</i> _{B13}	$-0.75^{+0.12}_{-0.13}$	0.07 ± 0.03	$0.08^{+0.10}_{-0.07}$ ($0.23^{+0.18}_{-0.11}$; $-0.08^{+0.10}_{-0.07}$)	0.04 ± 0.06	1.21
$M_{500}^{\rm wl}(r_{500}^{\rm T}) - M_{500}^{\rm T}(r_{500}^{\rm T})$	default	$c_{\rm B13}$	-0.63 ± 0.23	0.04 ± 0.06	$0.05^{+0.11}_{-0.08}$ ($0.17^{+0.18}_{-0.12}$; $-0.08^{+0.11}_{-0.10}$)	0.02 ± 0.05	0.88
$M_{500}^{ m wl}(r_{500}^{ m G}) - M_{500}^{ m G}(r_{500}^{ m G})$	default	<i>c</i> _{B13}	$-0.89^{+0.18}_{-0.31}$	$0.01^{+0.03}_{-0.04}$	$0.04^{+0.10}_{-0.07}$ ($0.21^{+0.17}_{-0.10}$; $-0.15^{+0.09}_{-0.07}$)	0.00 ± 0.07	2.11

- Monte Carlo/jackknife method
- Most of our clusters consistent with $M^{hyd} = M^{wl}$
- No evidence for hydrostatic bias $> \sim 25\%$, if M^{wl} unbiased
- Surprisingly low level of scatter in mass-mass SR
- Low- and high-mass bins offset by $\sim 2\sigma$

Same observations at fixed physical radius

Mass-dependent no artifact of account for cluster members

400d Clusters are rather low-mass

Conclusions of HI+14

- Probing an unexplored region of parameter space: 0.4~z~0.5 clusters, down to 10¹⁴ M_{sun}
- WL and hydrostatic masses consistent; no evidence for hydrostatic bias of >~25%
- Mass-dependent hydrostatic mass bias robust against WL analysis settings
- MMT clusters well representative of 400d cosmo-sample (8 of 36)
- Mass-dependent bias due to small number statistics, very subtle analysis artefacts, or physically different low-mass cluster population

XMM-like temperatures for 400d clusters

Schellenberger+14 conversion

Recovering lower XMM hydro masses

XMM-like WL-hyd scaling relation

A stronger hydro mass bias

A stronger hydro mass bias

Summary & Conclusions

- ~20% lower hydrostatic masses converting temperatures to XMM-Newton PN
- Overall hydrostatic bias ~20% for all clusters, ~-5% for low mass clusters, ~35% for high-mass clusters
- Mass-dependent bias persists (cluster physics?)
- Preliminary results, ignoring different calibration timestamps and energy ranges
- Pointing towards consistency with von der Linden+14
- ~40% bias for massive "Planck"-clusters not ruled out

Thanks!