

Neutron Star Interior Composition ExploreR NICER

Bev LaMarr (MIT) for the NICER team.

NICER Neutron star Interior Composition ExploreR NICER Payload (http://heasarc.gsfc.nasa.gov/docs/nicer/slides/NICER_Science_Overview.pdf) Sunshades and X-Ray **Concentrators (56)** X-ray Timing Instrument (XTI) XTI Radiator detectors surface **Focal Plane Modules** Detects individual X-ray photons, (56) returns energy and time of arrival **GPS** Antenna Star tracker Connector Bench Bracket Electronics DAPS (EL/AZ, Straightforward thermal system Deploy, & **HiPos box** Latching actuators with **Pointing System** • **EVR/EVA fixture Adapter Plate** for each) Contamination Allows the XTI to track pulsars Shield (protects XRCs) Slews XTI between targets Frangibolt Launch Lock mounts (also serve as AFRAM C&DH conical support when NICER is stowed)

- Assembly of 56 X-ray concentrators and
- Held together in the Instrument Optical
- Maintains thermal-mechanical alignment
- Composed of high-heritage components

- Digital interface to ISS for commands, data
- Supports pointing system
- Flight Releasable Attachment Mechanism
 - Electrical & mechanical interface to ISS and transfer vehicle
 - Provided by ISS program

NICER will deliver an unprecedented combination of sensitivity, time resolution, and energy resolution

- Spectral band: 0.2–12 keV
 - Well matched to neutron stars
 - Overlaps RXTE and XMM-Newton
- Timing resolution: 100 nsec RMS absolute
- Energy resolution: 2% @ 6 keV
- Angular resolution: 6 arcmin (nonimaging FOV)
- Sensitivity, 5σ: 5.3 x 10⁻¹⁴ erg/s/cm²
 - 0.5–10 keV in 10 ksec (Crab-like spectrum)

Silicon Drift Detector structure

Neutron star Interior Composition ExploreR

Thin p+ region at the top is biased to approximately -50 V.

This p-n junction fully depletes 500 micron thick n-type silicon bulk.

N+ anode in the center at the bottom stays at near zero potential (virtual zero).

Concentric p+ rings at the bottom provide lateral field that pulls electrons towards anode.

Anode is connected to the input of charge sensitive amplifier.

Drift time of electron cloud depends on the distance to anode.

The spectrum derived from the slow channel amplitudes is comparable to a CCD.

• 56 flight detectors (plus 8 spares)

Neutron star Interior Composition ExploreR

- 7 MPUs (plus 2 spares; with late delivery, so that most of calibration is done with an Engineering MPU)
- Extraordinarily Fast Detectors (timing done with 40 ns clock ticks)

Specialized Calibration Tasks

- Fully characterize throughput, energy resolution, and redistribution over 0.2 to 12 keV.
- Measure offsets between signal hold times and true event times for both pulse analysis chains
- Measure delays for events that are outside the collimator, to help reject background events.

NNCER

Planned Ground Tests

All FPMs

TEC Test Trigger Noise Low Energy Spectrum Background & Dark Optical Window Test Long Background Test MXS Spectrum Fast Chain Timing Slow Chain Timing Flux Linearity Clean MXS Line Spectrum

Select FPMS

Performance at -45C Performance at -50C Performance at -60 C Response to MeV Gamma Rays Timing with Pinhole Cap Extensive Pinhole Scans Absolute Throughput Broadband Window Transmission

MHER

Custom Calibration Chamber

Neutron star Interior Composition ExploreR

- Allows 8 detectors at a time
- Modulated X-ray Source (MXS) from GSFC: pulsed lines from .28 keV to 8.9 keV
- Testing of flight detectors will begin this month

Partially populated backplate

Spectrum of MXS on a CCD

NICER

Time delay due to charge drift in SDD

LED pulse producing X-ray flash and voltage step for one of the excited photons

Histogram of step amplitudes for events in the plot above. Ti lines at 4.51 and 4.93 keV are clearly

Analyzing large number of events shown on the left, we were able to measure delay time vs position

SDD signal rise time, horizontal scan

0

translation stage position, microns

60

40

20

-2000

-1000

SU

signal rise time,

Combining the two results on the left produced a measurement of rise time as a function of delay time. This dependence is a basis for discriminating events originating far from detector center

1000

2000

Neutron star Interior Composition ExploreR

Radiation Testing

- Both standard SDD and SDD with CMOS preamp were irradiated at the MGH cyclotron to the same dose, 600 Rads of 38 MeV protons. Proton fluence was 3x10⁹ protons/cm².
- At this dose, which is estimated to be 10 times the dose after 2 years of flight, all devices showed about the same dark current increase of about a factor of 20.
- For all the devices FWHM of the Mn X-ray line was measured before and after irradiation. Results for 600 Rad dose are shown on the left.
- Increase in energy resolution at warmer temperatures after irradiation is caused by extra dark current-associated noise. Estimates of FWHM degradation are in very good agreement with calculations of extra noise due to dark current accumulation during the peaking time of the shaper.
- For chosen temperature of operation (-55C = 218K) energy resolution stays the same as it was before 600 Rad irradiation.

backup

Neutron star Interior Composition ExploreR

- NICER is manifested with one other payload, OCO3, on SpaceX-12 Falcon 9 launch
 - NICER is an unpressurized payload located in the open-ended "trunk" cargo bay
 - Dragon transport vehicle provides 120 V heater power during transport but no telemetry or 28 V power for electronics
 - While docked on the ISS, *Dragon* can provide additional heater power for pre-heating after OCO3 is removed.

NNH

- CDR 9/16/14
- deliver FMPs 3/27/15
- deliver MPUs 5/11/15
- XTI integration and test finish 7/13/15
- launch 8/11/16

SDD with low energy source (teflon illuminated by Americium with fe55)

NICER