CHANDRA HETG Observations at high X-Ray Fluxes

CC-mode vs. TE mode calibration and effects of dispersed secondary images

Grating Configuration and Calibration Sources

_

Sources	Obsids	Flux	Flux	N_H	exposure	Mode	Subarray	Z-Sim
		(1)	(2)	(3)	(4)			(5)
$4U\ 1957{+}115$	10659	35	0.80	0.15	10	TE	15, 440	-6.8
	10660		0.80	0.15	20	$\mathbf{C}\mathbf{C}$	_	-6.8
	10661		0.80	0.15	10	TE	15, 440	-6.8
4U 1728-34	2748	85	2.00	$2,\!51$	30	TE	1,400	-7.49
	6567		2.00	$2,\!51$	160	$\mathbf{C}\mathbf{C}$	-	-4.0
GX 13+1	11817	330	7.94	3.16	30	TE	1,350	-8.0
	11818		7.94	3.16	30	$\mathbf{C}\mathbf{C}$	faint	-8.0
	13197		7.94	3.16	10	$\mathbf{C}\mathbf{C}$	graded	-8.0
GX 349+2	12199	660	15.8	1.99	20	$\mathbf{C}\mathbf{C}$	-	-6.14
	13220		15.8	1.99	20	TE	1,300	-11.3

 $\mathbf{C}\mathbf{C}$

 $\mathbf{C}\mathbf{C}$

 $\mathbf{C}\mathbf{C}$

-6.14

-6.14

-6.14

-6.14

-11.3

TABLE 1 CALIBRATION SOURCE PROPERTIES

 $\mathbf{C}\mathbf{C}$ 10881340 8.20.32100 50 $\mathbf{C}\mathbf{C}$ GX 5-1 5888700 $17.0 \quad 3.36$ $n\overline{\text{Crab}}$, (2) [10⁹ erg cm⁻² s⁻¹], (3) [10²² cm⁻²], (4) [ks], (5) [mm]

1.99

0.32

0.32

40

70

70

15.8

13.2

13.2

540

13221

8170

8599

Cyg X-2

Higher orders in CC-Mode

ACIS calibration: energy scale and gain

ACIS calibration: grade distributions

HETG spectra of fluxes < 35 mCrab

HETG spectra of very bright sources

Collapsed dispersed images: scattering halos

Scattering halo effect and Si K edge

Point Simulation

Point + Halo Simulation

1.9

Si K edge at low and high absorption

Instrumental Si K edge correction in front-illumination devices

Conclusions:

- Calibration of ACIS in CC-mode generally does not deviate from TE-mode
- The Si K edge in FI devices has Si O_2 XAFS imprints, BI devices have not
- The Si K edge is optical depth is affected by collapsed dispersed scattering halos
- The full callapsed dispersed imaged in CC-mode alters the original point sources spectrum and requires additioanl science modeling
- Higher order background overlaps can be avoided by moving two grating arms of the array
- CC-mode background is significant but can be dealt with is several ways

Problems in bright HETG spectra are not ACIS calibration related but require intensive additional modeling and data reduction depending on chosen configurations