ASTROSAT CALIBRATION

Dipankar Bhattacharya, IUCAA, Pune on behalf of the Astrosat collaboration

Dipankar Bhattacharya

ASTROSAT

A Satellite Mission for Multi-wavelength Astronomy Indian Space Research Organisation http://astrosat.iucaa.in/

India's first dedicated astronomical observatory in space

- Five science payloads covering Opt/UV to hard X-ray bands for simultaneous multi-wavelength timing and spectroscopy
- All science payloads delivered
- Final integration ongoing
- Being readied for Oct 2015 launch

Orbit: 650 km 6° - 8°

ASTROSAT will be a proposal-driven observatory-class mission (AO will be opened I year after launch; I st 6m PV, followed by 6m of GT)

Major interest areas of X-ray instruments will include

- Strongly Magnetic Neutron Stars: Cyclotron Spectra, HE continuum (structure and evolution of neutron star magnetic fields, radiation processes)
- Wideband Spectral Variability Monitoring (accretion disk geometry, emission mechanism, QPO origin, disk-jet connection)
- Transients

ASTROSAT Simulation

Target : Vela X-1

Ground Calibration of ASTROSAT X-ray Payloads

- Spectral channel to energy relation
- Spectral resolution
- Effective area
- Timing
- Imaging and FOV

Radioactive Sources

(simulations; need PV for final calibration)

Radioactive Sources, X-ray gun, optical

Supplemented by Geant4 simulations

Products generated

Response of detector elements,

Individual and Collective

Dependence on instrument settings, temperature

HEASARC CALDB format

Dipankar Bhattacharya

LAXPC: proportional counters (3 units)

Dipankar Bhattacharya

0

0

 10^{4}

Collimator Profile from source scan across the detector

Timing properties: power spectrum

Frequency (Hz)

3×104

2×104

 4×10^{4}

5×104

CZTI: (Cadmium Zinc Telluride pixellated detector array behind Coded Mask)

Dipankar Bhattacharya

SXT: (CCD at the focus of foil mirror optics)

Optical PSF

Dipankar Bhattacharya

-20

Energy (keV)

-20

Positions-X, mm

-400

-200

Positions-Y, mm

Energy (keV)

200

400

IACHEC 2015 Beijing

10

20

Position along the wire (mm)

0

-10

In-flight Calibration

- Initial calibration during Performance Verification (PV) phase: 6 months
- Periodic calibration later in flight (2% of mission time reserved)

Calibration objectives during PV

SXT	LAXPC	CZTI	SSM
 Alignment PSF Effective Area Spectral Response Background Timing Contamination CTI 	 Alignment FOV Effective Area Spectral Response Background Timing 	 Alignment FOV Effective Area Spectral Response Background Timing CAM Response 	 Alignment FOV Effective Area Spectral Response Background Timing CAM and Wire Platform Rotation

- Target classes: Stars, Isolated WD & NS, CVs, XRBs, SNRs, AGNs, Clusters
- Several bright, hard sources will be used during these calibration runs
- Many are variable essential to establish source characteristics via simultaneous observations with other missions, e.g. SWIFT, NuSTAR

Dipankar Bhattacharya

ASTROSAT PV phase schedule

Time after launch (months)

- Request short (~Iks), simultaneous SWIFT observations of selected bright targets from ASTROSAT PV phase list
- Will plan ASTROSAT observations concurrent with scheduled NuSTAR targets request collaboration for calibration
- Post-PV, will participate in periodic multi-mission calibration campaigns

