Bias in Chisq Estimation

Herman L. Marshall

Fitting Power Laws in Narrow Energy Ranges

- Objective: Coarse characterization of systematic errors
- Method:
- Define narrow energy bands
- Fit power law to spectrum in each band
- Compute flux in each band using model
- Compute confidence interval for each flux
- Compare fluxes for different instruments
- Claim: flux is robust to error in model
- Shortcut for grating spectra: straight sums

Cross-calibration

 with PKS 2155- Ishida et al (201I)
- Direct result of IACHEC
- Joint Suzaku, XMM, \& Chandra
- Each combination examined
- Overall fits to power law
- Fluxes in bands (by PL fits)
- No conclusion yet....

IACHEC - 4/II

Application to HETGS

- Cross-check results with direct method
- Data $=\left\{C_{i}, E_{\}}\right\}$, measured in time \dagger
- Effective area $=A_{i}$
- Estimator:

$$
F\left(E_{\min }, E_{\max }\right)=\sum_{E_{\min }}^{E_{\max }} \frac{C_{i} E_{i}}{t A_{i}}
$$

- Is this the best estimator?
- Is it biased?

Estimation Methods

- Consider simple situation (Case 1)
- Source has invariant photon flux n
- Observe twice with effective area A
- Exposure times are t_{1}, t_{2}, counts C_{1}, C_{2}
- One estimate of $n\left(\chi^{2}\right)$:

$$
n=\frac{n_{1} / \sigma_{1}^{2}+n_{2} / \sigma_{2}^{2}}{1 / \sigma_{1}^{2}+1 / \sigma_{2}^{2}}, n_{1}=\frac{C_{1}}{A t_{1}}, n_{2}=\frac{C_{2}}{A t_{2}}, \sigma_{1}=\frac{\sqrt{C_{1}}}{A t_{1}}, \sigma_{2}=\frac{\sqrt{C_{2}}}{A t_{2}}
$$

- Maximum Likelihood (Poisson) estimate of n :

$$
n=\frac{C_{1}+C_{2}}{A\left(t_{1}+t_{2}\right)}
$$

Chisq v. ML

- Bevington (p. 248)
- model: $y=\alpha e^{-\beta x^{2}}+\gamma$; data: $\left(y_{i}, \sigma_{i}\right), y \sim P\left(y\left[x_{i}\right]\right)$
- Fit using χ^{2} stat giving ($\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$)
- Define $A=\Sigma y_{i}, A^{\prime}=\Sigma y\left[x_{i} ; \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right]$
- Then using χ^{2} stat gives $A^{\prime}=A-\chi_{\text {min }}^{2}$
- If $\sigma_{i}=\sigma$, then $A^{\prime}=A$ (but unexplained)
- ML treatment gives $A=A^{\prime}$
- Simple case: $y^{\sim} P(\alpha), M$ equal bins: $\alpha^{\prime}=N / M$ - Fit using $\chi^{2}: 1-A^{\prime} / A=\chi^{2} \min / N \approx(M-1) / N \approx 1 /(S N R)^{\wedge} 2$ - Fit using $\chi^{2}, \sigma_{i}=\alpha: A^{\prime}=A+\chi^{2}$ min $/ 2$
- Also true for $y^{\sim} P\left(\eta_{i} \alpha\right)$, with known η_{i}

Cross-Cal Case

- Example from fitting XMM spectra in bands

Simple Cases

- Case 2: two observations, different areas and exposures:

$$
n=\frac{C_{1}+C_{2}}{A_{1} t_{1}+A_{2} t_{2}}
$$

- Case 3: estimate narrow band energy flux (two observations, same band)

$$
F=E \frac{C_{1}+C_{2}}{A_{1} t_{1}+A_{2} t_{2}}
$$

Extending Chisq v. ML

- Case 4, analogous to counts in HETGS
- Model: $y=\omega_{i} \mu_{i} F, \Sigma \mu_{i}=1$
- $\mu_{i}=$ unknown fractional flux in bin i (at energy E_{i}) of M
- $\omega_{i}=T A_{i} / E_{i}=$ known flux/count scaling, total count is $N=\Sigma C_{i}$
- ML: $F^{\prime}=N / \sum \omega_{i} \mu_{i}, \mu_{i}^{\prime}=C_{i} /\left(F^{\prime} \omega_{i}\right)$
- using $\Sigma \mu_{i}=1$, then $F^{\prime}=\Sigma C_{i} / \omega_{i}=\Sigma C_{i} E_{i} /\left(T A_{i}\right)$
- flux is sum of flux estimates in each bin
- Uncertainty: $\sigma_{F}=F / \sqrt{N}$
- χ^{2} : Same answer!
- M unknowns $\left(F, \mu_{\mathrm{i}}\right), N_{\text {DoF }}=0 \rightarrow \chi_{\min }^{2}=0$

The Case of Interest

- PL spectral model, want broad-band flux
- known $\Gamma, n(E)=K(E / \hat{E})^{-\Gamma}$
- data: counts in equal bandpasses of size ΔE

$$
K=\frac{\Sigma C_{i}}{\Delta E \Sigma A_{i} t_{i}\left(E_{i} / \hat{E}\right)^{-\Gamma}}, F=\frac{K \hat{E}^{2}}{2-\Gamma}\left[\left(E_{\max } / \hat{E}\right)^{2-\Gamma}-\left(E_{\min } / \hat{E}\right)^{2-\Gamma}\right]
$$

(2) χ^{2} : fractional error in $F=\chi^{2} \min / N \approx(M-1) / N$

- Set reference energy to $\hat{E}=\log E_{\max } / E_{\min }$ - How does \hat{E} depend on assumed $\Gamma(=2)$?
- What's the error in F if assumed Γ is wrong?

Central Energy

Flux Sensitivity

Summary

- Chisq fits: systematically low flux estimates
- Fractional flux bias is $\sim 1 /(\mathrm{cnt} / \mathrm{bin})$
- Applies to fluxes in lines as well
- emission lines: underestimated
- optical depths: overestimated
- Results from approx. model of stat. variations
- Maximum likelihood fluxes are unbiased
- Flux summing method is same for ML and χ^{2}
- Not "best" estimator if spectral shape is known
- Biased if full band is not represented
- e.g. PL model of $4-10 \mathrm{keV}$ is larger than sum of $4-8 \mathrm{keV}$
- "Best" if spectrum is not easily characterized

