

Bringing The High Energy Universe Into Focus

NuSTAR Calibration Status

Karl Forster for the NuSTAR team

10th IACHAC meeting Beijing, China

- NASA small explorer class mission
 - PI Fiona Harrison Caltech
 - Partners: ASI, ASDC, DTK, HEASARC
 - Launched June 2012, 600km 6° orbit
- Completed baseline science mission
- First extended mission
 - 50% Guest Observer Programs
 - Joint XMM, Chandra, Suzaku Swift
 - 25% Legacy surveys
 - 15% ToO / DDT

Star tracker

- > 2 telescopes (FPM)
- > 10.14m focal length
- > 12' x 12' field of view
- 1 arcmin HPD
- > 2x2 CZT detector array
- > 3-79 keV energy range
- > 0.4 to 1 keV resolution

NuSTAR Calibration Status - Karl Forster IACHEC 2015 - Beijing, China

Metrology system

X-ray optics

Mast

NuSTAR

NuSTAR and SDO image of the Sun

The NuSTAR data, seen in green and blue, reveal solar high-energy emission (green shows energies between 2 and 3 kiloelectron volts, and blue shows energies between 3 and 5 kiloelectron volts). The high-energy X-rays come from gas heated to above 3 million degrees.

The red channel represents ultraviolet light captured by SDO at wavelengths of 171 angstroms, and shows the presence of lower-temperature material in the solar atmosphere at 1 million degrees.

- Spacecraft and instrument nominal
 - Detector shield PMT threshold adjusted to return to correct SAA trigger behavior (June 2014)
 - Metrology system laser-1 operating power adjusted in response to trend in laser intensity (December 2014)
- Calibration nominal
 - Calibration paper submitted to ApJS
 - Madsen et al. 2015 arXiv 1504.01672v1
 - Latest CALDB patch 20150316 addresses time dependent change in detector energy scale (gain)
 - Released 2015-03-20
 - Cross calibration campaign on 3C 273 planned for June 17-19th
 - NuSTAR, Chandra, XMM, Swift, & Suzaku (possibly INTEGRAL)

NuSTAR NuSTAR Calibration

- Effective Area
 - Multiple observations of Crab nebula
 - Assume Γ = 2.1 in 3-78 keV range
 - Measure $N_{H} = 2.224 \times 10^{21} \text{ cm}^{-2}$
 - normalized using 3C 273 measurement
- Absolute normalization uses cross-calibration observations
 - IACHEC organized simultaneous observations of PKS 2255-301 & 3C 273
 - Simultaneous modeling of data from *NuSTAR* and *Chandra, XMM-Newton, Swift, & Suzaku*
- Vignetting response
 - 39 observations of Crab at multiple off axis angles in 2012 & 2013
 - Uses piece-wise linear spline function to modify ground calibration model
 - Model corrections for energy dependence including ghost-rays (single bounce) and aperture stop
- PSF calibration
 - Multiple observations of bright point sources
 - Cyg X-1, Vela X-1, GRS 1915+105, GS 0834-430, Her X-1
- Detector gain calibration
 - Uses deployable calibration source ¹⁵⁵Eu deployed in June 2012 and January 2015
- Timing calibration
 - On-board time reference uses temperature compensated crystal oscillator 24 MHz
 - Routinely correlated with ground time references (referenced to UTC via GPS)
 - Timing performance characterized using observations of pulsars in Crab and B1509-58
 - System performance accuracy of 3 ms
- See NuSTAR observatory calibration paper (Madsen et al. 2015 arXiv :1504.01672v1)

PSF stability

(Kristin Madsen)

 Using observations of brightest point sources scattered throughout the mission

- GRO J1008-57 2012:335
- ➢ GRO J1744-28 2014:047
- ➢ GRS 1739-278 2014:086
- ≻ Cyg X-1 2015:019
- Avoiding detector gaps

GRO_J1008m57 80001001002 2012:335

GRO_J1744m28 80002017002 2014:047

GRS1739m278 80002018002 2014:086

GRO_J1008m57 80001001002 2012:335

NuSTAR Calibration Status - Karl Forster IACHEC 2015 - Beijing, China

PSF stability Conclusion

- Both module A and B show remarkable stability over time. The macroscopic figure errors have not changed since launch.
- This means:
 - Internal alignment and aspect reconstruction remains unchanged.
 - No change in figure error and probably no change in microroughness either
 - And therefore no change in the effective area!

Detector Calibration

(Brian Grefenstette)

- Hints based on background lines of a slow decrease in apparent line energy. (Takao Kitaguchi and Andreas Zoglauer)
 - Need to integrate ~6 months of background data to get enough statistics to measure this.
- ¹⁵⁵Eu Calibration source deployed in January 2015 to measure any potential gain shift since June 2012.
 - Emission lines complexes at 6, 45, & 85 keV
 - Led to recalculation of all gain parameters.

2012 vs. 2015

IACHEC 2015 - Beijing, China

NuSTAR Calibration Status - Karl Forster IACHEC 2015 - Beijing, China

Detector Calibration

(Brian Grefenstette)

- Hints based on background lines of a slow decrease in apparent line energy. (Takao Kitaguchi and Andreas Zoglauer)
 - Need to integrate ~6 months of background data to get enough statistics to measure this.
- ¹⁵⁵Eu Calibration source deployed in January 2015 to measure any potential gain shift since June 2012.
 - Emission lines complexes at 6, 45, & 85 keV
 - Led to recalculation of all gain parameters.
- Absolute gain shift for DETO FPMA/B over ~2.6 years:
 - A: 0.55% B: 0.26%
 - So... roughly 0.15 to 0.25% per year (assumed linear)
- Recommend quoting a systematic error of ~40 eV near the Fe Klines rising to a systematic error of ~60 eV near 68 keV ⁴⁴Ti lines.
 - Reprocess data taken after mid-2013

Summary of NuSTAR calibration status

- ARF *completed*
 - ARF revisions:
 - o 2013-08-04 CALDB version 20130509
 - Based on 1st Crab calibration
 - o 2013-11-25 CALDB version 20131007
 - Absolute normalization adjustment (+15% area, -15% flux) based on IACHEC cross calibration observations
 - o 2014-01-17 CALDB version 20131223
 - Revised Crab high energy calibration
- PSF completed
- Detectors completed
 - Gain/CLC revisions:
 - CALDB version 20140414: Corrections for some high-grade events
 - CALDB version 20150316: Time dependent gain calibration
- Background Understood and managed
 - QA & NuSTARDAS screening