XMM-Newton/Chandra Cross Calibration

Chen Y., Song L.M. Jia S.M., Li C.K., Zhao H.H., Wang Y.H.

> Cluster of Galaxies Group / IHEP 2015.4.22

Introduction

Main work: Statistical studies on X-ray properties of clusters

A cluster sample (XMM-Newton/Chandra)—164 clusters

Chandra : 112 (subsample I) XMM-Newton : 124 (subsample II) Both: 72 (subsample III)

Studies on X-ray properties of subsamples:

T, M, L, S, L-M, L-T, M-T.....

BUT: the properties from XMM-Newton and Chandra are different

First, we have to find a way to combine the subsamples

Using subsample III (62) Relations of the properties between XMM-Newton and Chandra

Temperature & Mass

 $T_{\text{Chandra}} = 1.25 \times T_{\text{XMM}} - 0.13$

 $\log_{10} M_{\text{Chandra}} = 1.02 \times \log_{10} M_{\text{XMM}} + 0.15$

Zhao H.H. et al. 2015

Mass Correction (1)

T-relation : $T_{ch} \rightarrow T_{ch/T} \rightarrow M_{ch/T}$

The mass difference between XMM and Chandra are mainly caused by T.

Mass Correction (2)

Comparison with M_{wl}

The XMM-Newton mass is consistent with the weak lensing mass. Does it mean that the XMM-Newton mass are more reliable?

Fit the spectrum with the other' T Chandra: fit well XMM-Newton: not fit well XMM-Newton has a stronger restriction on T

Mass calculation and comparison with M_{WL} Does it mean that the XMM-Newton T is more reliable?

- We get the T-relation and M-relation of galaxies clusters between Chandra and XMM-newton, which can be used directly in the sample combination.
- Which correction is better: Tch → Tch/new ? Txmm → Txmm/new ?

