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The Planck cluster counts – CMB discrepancy 
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Planck Collab. 13 XX, Planck Collab. 15 XXIV 

Planck Collaboration: Cosmology from SZ cluster counts

Fig. 7: Comparison of constraints from the CMB to those from
the cluster counts in the (⌦m,�8)-plane. The green, blue and
violet contours give the cluster constraints (two-dimensional
likelihood) at 1 and 2� for the WtG, CCCP, and CMB lens-
ing mass calibrations, respectively, as listed in Table 2. These
constraints are obtained from the MMF3 catalogue with the
SZ+BAO+BBN data set and ↵ free. Constraints from the Planck
TT, TE, EE+lowP CMB likelihood (hereafter, Planck primary
CMB) are shown as the dashed contours enclosing 1 and 2� con-
fidence regions (Planck Collaboration XIII 2015), while the grey
shaded region also include BAO. The red contours give results
from a joint analysis of the cluster counts, primary CMB and
the Planck lensing power spectrum (Planck Collaboration XV
2015), leaving the mass bias parameter free and ↵ constrained
by the X-ray prior.

6.3. Constraints on ⌦m and �8: comparison to primary CMB

Our 2013 analysis brought to light tension between constraints
on⌦m and�8 from the cluster counts and those from the primary
CMB in the base ⇤CDM model. In that analysis, we adopted a
flat prior on the mass bias over the range 1 � b = [0.7, 1.0], with
a reference model defined by 1 � b = 0.8 (see discussion in the
Appendix of Planck Collaboration XX 2014). Given the good
consistency between the 2013 and 2015 cluster results (Fig. 3),
we expect the tension to remain under the same assumptions con-
cerning the mass bias.

Figure 7 compares our 2015 cluster constraints (MMF3
SZ+BAO+BBN) to those for the base ⇤CDM model from the
Planck CMB anisotropies. The cluster constraints, given the
three di↵erent priors on the mass bias, are shown by the filled
contours at 1 and 2�, while the dashed black contours give the
Planck TT, TE, EE+lowP constraints (hereafter Planck primary
CMB, Planck Collaboration XIII 2015); the grey shaded regions
add BAO to the CMB. The central value of the WtG mass prior
lies at the extreme end of the range used in 2013 (i.e., 1-b=0.7);
with its uncertainty range extending even lower, the tension with
primary CMB is greatly reduced, as pointed out by von der Lin-
den et al. (2014b). With similar uncertainty but a central value
shifted to 1 � b = 0.78, the CCCP mass prior results in greater
tension with the primary CMB. The lensing mass prior, finally,
implies little bias and hence much greater tension.

6.4. Joint Planck 2014 primary CMB and cluster constraints

We now turn to a joint analysis of the cluster counts and primary
CMB. We begin by finding the mass bias required to remove ten-

Fig. 8: Comparison of cluster and primary CMB constraints in
the base ⇤CDM model expressed in terms of the mass bias,
1 � b. The solid black curve shows the distribution of values re-
quired to reconcile the counts and primary CMB in ⇤CDM; it
is found as the posterior on the 1 � b from a joint analysis of
the Planck cluster counts and primary CMB when leaving the
mass bias free. The coloured dashed curves show the three prior
distributions on the mass bias listed in Tab. 2.

sion with the primary CMB, and then consider one-parameter
extensions to the base ⇤CDM model, varying the curvature, the
Thomson optical depth to reionization, the dark energy equation-
of-state, and the neutrino mass scale. Unless otherwise stated,
"CMB" in the following means Planck TT, TE, EE+lowP as de-
fined in Planck Collaboration XIII (2015). All intervals are 68%
confidence and all upper/lower limits are 95%.

6.4.1. Mass bias required by CMB

In Fig. 8 we compare the three prior distributions to the mass
bias required by the primary CMB. The latter is obtained as the
posterior on (1 � b) from a joint analysis of the MMF3 cluster
counts and the CMB with the mass bias as a free parameter. The
best-fit value in this case is (1 � b) = 0.58 ± 0.04, more than 1�
below the central WtG value. Perfect agreement with the primary
CMB would imply that clusters are even more massive than the
WtG calibration. This figure most clearly quantifies the tension
between the Planck cluster counts and primary CMB.

6.4.2. Curvature

By itself the CMB only poorly determines the spatial curvature
(Sect. 6.2.4 of Planck Collaboration XIII 2015), but by including
another astrophysical observation, such as cluster counts, it can
be tightly constrained. Our joint cluster and CMB analysis, with-
out external data, yields ⌦k = �0.012 ± 0.008, consistent with
the constraint from Planck CMB and BAO ⌦k = 0.000 ± 0.002.

6.4.3. Reionization optical depth

Primary CMB temperature anisotropies also provide a precise
measurement of the parameter combination Ase�2⌧, where ⌧ is
the optical depth from Thomson scatter after reionization and As
is the power spectrum normalization on large scales (Planck Col-
laboration XIII 2015). Low-` polarization anisotropies break the
degeneracy by constraining ⌧, but this measurement is delicate
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How to measure cluster masses with Planck? 
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Planck SZ 

XMM-Newton + Planck SZ 

Planck Collab. 13 XXIX, Planck Collab. 15 XXVII 

189 confirmed clusters at SZ S/N>7; 184 with spectroscopic redshifts. 

Planck Collaboration: Planck Legacy SZ

Fig. 15. Scatter of the recovered estimates of Y500 with
the input Y500. Top panel : for the marginalised Y500 pos-
terior, ‘Y blind’. Bottom panel : for the sliced posterior
p(Y500|θ500), assuming an accurate radius prior.

We used the masses for the confirmation of candidate
counterparts (see Sect. 7) and we provide them, along with
their errors, in the PSZ2 catalogue for all detections with
confirmed redshift. We compared them with the masses pro-
vided in PSZ1 for the detections where the associated coun-
terpart (and thus the redshift value) has not changed in the
new release (see Appendix B). We find very good agreement
between the two values which are consistent within the er-
ror bars over the whole mass range.

In the individual catalogues, we provide for all entries
an array of masses as a function of redshift (MSZ(z)), which
we obtained by intersecting the degeneracy curves with the
expected function for different redshift values, from z = 0
to z = 1. The aim of this function is to provide a useful
tool for counterpart searches: once a candidate counterpart
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Fig. 16. Illustration of the posterior probability contours
in the Y5R500 − θs plane for a cluster detected by Planck :
the contours show the 68, 95 and 99 percent confidence
levels. The red continuous line shows the ridge line of the
contours while the dashed lines the 1-σ probability value at
each θs. The cyan line is the expected Y − θ relation at a
given redshift that we use to break the degeneracy.

Table 3. Results of fits between S/N from the PSZ1 and
PSZ2, using the fitting function in Eq. 6. The assumed cor-
relation of the uncertainties of s1 and s2 was 0.72.

s1 s2 A α σ

PSZ2 PSZ1 0.76± 0.08 0.72 ± 0.01 0.53± 0.02

is identified, it is sufficient to interpolate the MSZ(z) curve
at the counterpart redshift to estimate its mass.

6. Consistency with the PSZ1

The extra data available in the construction of the PSZ2 im-
proves the detection S/N and reduces statistical errors in
the parameter and location estimates. Here we assess the
consistency between the two catalogues, given the matching
scheme discussed in Sect. 7.1.

6.1. Signal-to-noise

We fit the relation between S/N for common PSZ1 and
PSZ2 using the the approach and model discussed in Sect.
3.4. For the PSZ1 and PSZ2, the likelihoods for s1 and
s2 have a strong covariance, as more than half of the
PSZ2 observations were used in the construction of the
PSZ1. We therefore assign a covariance of 0.72 between
the two S/N estimates, as is appropriate for Gaussian er-
rors sharing 53% of the data. As the errors are not truly
Gaussian, we allow for an intrinsic scatter between the
S/N estimates to encapsulate any un-modelled component
of the S/N fluctuation.

The consistency of the S/N estimates between the
PSZ1 and PSZ2 are shown in Fig. 17 and the best fit-
ting model in is shown in Table 3. Detections with PSZ2
S/N > 20 are affected by changes in the MMF3 S/N defi-
nition. For the PSZ1, the empirical standard deviation of
the filtered patches was used to define the S/N in this

14



Enter hydrostatic mass bias 
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Weak Lensing may hint at large hydrostatic bias 
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von der Linden+14 Note dependence on WL survey! 



Chandra and XMM temperatures disagree 
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Chandra vs. XMM: effect on cosmology 
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Schellenberger+14 



The 400d X-ray cluster survey 
•  Serendipitous cluster detections in all 

suited Rosat/PSPC pointings (~400 deg2): 
Burenin+07 

•  Chandra analysis, mass determination for 
cosmo-subsample of 36 X-ray luminous 
clusters z>0.35: Vikhlinin+09a 

•  Constraints of cosmological parameters 
comparing cosmo-subsample mass 
function to local clusters: Vikhlinin+09b 

8 

The 400d X-ray and Weak Lensing Surveys

CL 0230+1836, z=0.80

1’

A well-defined X-ray sample

I Burenin et al. (2007): Serendipitous cluster detections
in all suited Rosat/PSPC pointings (⇡400 deg2).

I Vikhlinin et al. (2009a): Chandra analysis and mass
determination for subsample of 36 distant
(0.35<z<0.90), X-ray luminous clusters.

I Vikhlinin et al. (2009b): Constraints of cosmological
parameters using the mass function from V09a.

Goals of weak lensing follow-up of V09a subsample

I Measure weak lensing masses “cosmology” subsample.

I Scaling relations for clusters typical of future surveys
(not extremely massive, rel. high in z).

I Consistency check on Vikhlinin (2009) cosmological
parameters.

From Vikhkinin et al., (2009a), HI et al. (2012).
Holger Israel (AIfA Bonn) Cluster Weak Lensing 2012-11-30 10 / 28

•  Weak lensing masses for first 8 clusters  
(MMT): HI+10,12. 

•  Doria+15, Shafiee in prep. will add 
further 14 clusters to WL sample. 

Chandra 

MMT 



Hydrostatic mass bias in the 400d clusters 
9 

HI+14a 

Direct calculation of   
hydrostatic mass profile 
Vikhlinin+09a Chandra 
TX and density profiles, 
assuming Reiprich+13 
temperature profile 
 



Pseudo-XMM hydro masses ~20% lower 

4 H. Israel et al.

Table 1. Observed mass bias in the I14 sample, for several choices of X-ray masses. Columns 2 and 3 give the slope P and intercept Q
of the general best-fit relation (Eq. 5) between Chandra and XMM-Newton masses. Column 4 shows the X-ray calibration bias, i.e. the

mean and standard error of hMxmm
500 /MCXO,I14

500 i. Columns 5 and 6 show the apparent bias with respect to the Chandra masses, averaged

over Monte Carlo simulations for all clusters (blog = hlog Mxmm
500 �log MCXO,I14

500 i) and for the Mwl
500 >1014.5 M� bin (blog,H). The final

column measures the mass-dependent mass bias as the di↵erence �bH�L
log between blog for the high- and low-mass clusters.

Hydrostatic mass P Q bxcal
lin blog blog,H �bH�L

log

MCXO
500 , new Monte Carlo 1 0 0 0.02+0.10

�0.08 �0.09+0.11
�0.10 �0.20+0.20

�0.16

MCXO
500 , incl. timestamp correction 0.946± 0.009 �0.002± 0.020 0.06± 0.00 �0.01+0.10

�0.09 �0.11± 0.11 �0.20+0.20
�0.16

Mxmm
500 , full conversion 0.783± 0.007 0.062± 0.015 0.19± 0.01 �0.08+0.10

�0.08 �0.19+0.11
�0.10 �0.21+0.20

�0.16

Mxmm
500 , temperature e↵ects only 0.799± 0.007 0.064± 0.015 0.17± 0.01 �0.07+0.10

�0.08 �0.18+0.11
�0.10 �0.21+0.20

�0.16

Mxmm
500 , no timestamp correction 0.826± 0.004 0.061± 0.007 0.15± 0.01 �0.05+0.10

�0.08 �0.16+0.11
�0.10 �0.21+0.20

�0.16

Figure 2. Mass estimates Mxmm
500 derived from pseudo-XMM-

Newton temperatures and assuming hydrostatic equilibrium as a
function of masses MCXO

500 derived from ICM temperatures ob-
served by Chandra. Error bars inscribed in the symbols denote
the uncertainty in Mxmm

500 due to the uncertainties in the ACIS–
combined XMM and timestamp conversions. For illustrative pur-
poses, the timestamp correction is not applied to the MCXO

500 , but
its inverse to the Mxmm

500 . The solid line marks the linear best
fit. A dashed line marks the best-fit relation when the di↵erent
Chandra calibration timestamps are not taken into account. For
the latter case, data points are not shown for the sake of clarity.

dashed line and shading for the 1� interval in Fig. 3. Dashed
lines and boxes at Mwl

500 6 1014.5 M� and Mwl
500 > 1014.5 M�

show the bias for the thus defined low- and high-mass sub-
samples.

For the eight clusters, we now find a pronounced bias of
blog =�0.08+0.10

�0.08, compared to blog = 0.02+0.10
�0.8 from Chan-

dra, using the updated Monte Carlo method. For the low-
mass sub-sample, Mxmm

500 and MWL
500 are consistent (blog =

0.02+0.16
�0.12); while for the high-mass sub-sample, we measure

blog = �0.19+0.11
�0.10, i.e. Mxmm

500 that are smaller than WL

masses by a similar amount as the MPl of vdL14 (cf. Fig. 3).

Figure 3. Ratio between the pseudo-XMM-Newton hydrostatic
mass Mxmm

500 , with timestamp correction, and the I14 WL mass
Mwl

500 as a function of Mwl
500. Short-dashed lines and light grey

shading denote the logarithmic bias blog = hlog Mxmm�log Mwli
obtained from averaging over Monte Carlo realisations. We also
show blog for the low-Mwl and high-Mwl clusters separately, with
the 1� uncertainties presented as boxes, for sake of clarity. As a
visual aid, a dot-dashed line depicts the Monte Carlo best-fit of
log (Mxmm/Mwl) as a function of Mwl. Empty symbols and the
triple-dot-dashed line denote the MCXO

500 case. Compare to Fig. 2A
in I14.

We repeat our analysis for a few modifications high-
lighting the relative importance of various contributing fac-
tors: First, we find that Chandra masses, converted to the
newer CalDB v4.2 and the 0.7–7 keV band are systemati-
cally lower than for the V09a calibration and energy range.
The Chandra-only timestamp calibration already accounts
for ⇠ 30 % of the di↵erence with XMM-Newton: blog =
�0.01+0.10

�0.09, a di↵erence of �blog =�0.03 (Table 1). This re-
sult is consistent with the higher masses the V09a pipeline
returns in the Rozo et al. (2014b,a) cross-calibration stud-
ies. Conversely, omitting the timestamps correction moves
up the Mxmm

500 , such that blog = �0.05+0.10
�0.08 is less negative

c� 2014 RAS, MNRAS 000, 1–8
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Cluster mass bias from Chandra, XMM, & Planck 3

Figure 1. The e↵ect of re-calibration on the temperature profile.
The black solid line shows the Reiprich et al. (2013) Chandra
temperature profile we assume for CL 0030+2618. By applying
Eq. (3), which is linear in log TX, to each datum of the profile,
we derive the grey solid pseudo-XMM-Newton profile, which is
slightly curved, but still close to the Reiprich et al. (2013) form.
As indicated by the vertical line, r500 lies safely within the range
(bold lines) in which the Reiprich et al. (2013) profile can be
used. Long-dashed curves denote the logarithmic derivatives. For
the sake of clarity, uncertainties are only shown at r500.

Both the calibration of an X-ray instrument and our knowl-
edge about it evolve with time. S14 assume calibrations as of
December 2012 (Chandra Calibration Database v4.2), while
V09a used the unchanged Vikhlinin et al. (2005) calibra-
tion procedure. This is no Calibration Database calibration,
but at the time of observation v3.1 was in place. Therefore,
we apply the following steps to derive pseudo-XMM-Newton
temperature profiles:

1. We transform the V09a TCXO from the energy range of
0.6–10 keV to 0.7–7 keV, by applying a correction

log

✓
kBT

(0.7�7)
CXO

1 keV

◆
= A0 · log

✓
kBT

(0.6�10)
CXO

1 keV

◆
+ B0 (4)

with A0 =1.0027±0.0018 and B0 =�0.0008±0.0013 derived
from fitting the Chandra temperatures of the HIFLUGCS
sample in the two spectral ranges, in analogy to S14. This
raises the TCXO values by 0.1 % to 0.3 %.
2. Using the timestamp correction for TX between di↵erent

Calibration Databases (Reese et al. 2010), derived for the
0.7–7 keV band, we convert the V09a temperatures to the
one used by S14 (version 4.2). From Eq. (23) of Reese et al.
(2010), we take a factor of TCXO,3.1/TCXO,4.2 =1.06 ± 0.05.
3. For each of the 106 Monte Carlo realisations, we com-

pute the Chandra temperature profile following Eq. (1). The
black solid line in Fig. 1 shows an example (CL 0030+2618).
4. Finally, we perform the transformation (Eq. 3) between

Chandra and the combined XMM-Newton instruments, in
the 0.7–7 keV energy range. The best-fit parameters taken
from S14 are A = 0.889+0.005

�0.003 and B = 0.000 ± 0.004. This
transformation is applied to every datum of the tempera-
ture profile. As the grey solid line in Fig. 1 shows, the re-
calibration introduces a slight curvature, because Eq. (3)
is linear in log TX rather than in TX. Given the measure-
ment uncertainties, the resulting departure from the form of
Eq. (1) is insignificant.

By applying this conversion, we emulate what ICM tem-
peratures would have been obtained for the 400d clusters,
had they been inferred from both the Metal Oxide Semi-
conductor (MOS) and the pn-CCD (PN) instruments (col-
lectively, the XMM-Newton European Photon Imaging Cam-
era, EPIC) instead of Chandra’s Advanced CCD Imaging
Spectrometer (ACIS). We denote the resulting temperatures
Txmm, with the lowercase indicating that they are converted
quantities, not actual XMM-Newton measurements.

For the eight I14 clusters, whose hTCXOi=4.4 keV/kB is
representative of the full 400d cosmology sample, we mea-
sure hTxmm/TCXOi = 0.81 ± 0.01, using the V09a cluster-
averaged temperatures. At r500, measured from weak lens-
ing, the ratio is hTxmm/TCXOi = 0.85 ± 0.01. This ratio is
closer to 1 because TX(r500)<hTXi and the cross-calibration
di↵erences are smaller for lower TX according to S14.

2.4 Pseudo-XMM-Newton hydrostatic masses

Within our Monte Carlo scheme, we re-derive hydro-
static masses by inserting the pseudo-XMM-Newton profiles
Txmm(r) and their values at r500 into Eq. (2), thus account-
ing for the nonlinear nature of Eq. (3).

Di↵erences in the e↵ective area normalisation between
Chandra and XMM-Newton also a↵ect the measured gas
mass Mgas and hydrostatic mass via the calibration of the
flux S. As Mgas /

p
S, the 5 % flux di↵erence for the full

energy range in Nevalainen, David & Guainazzi (2010) corre-
spond to 2 % uncertainty in Mgas. We account for this e↵ect
by rescaling the pseudo-XMM-Newton masses by 0.98.

As expected for lower input temperatures and flatter
TX gradients, we find the resulting pseudo-XMM-Newton
hydrostatic masses for all clusters to be lower than the Chan-
dra-measured values (Fig. 2). We point out that in Fig. 2,
we do not apply the timestamp correction to the TCXO, to
highlight the combined e↵ect of both corrections. The rela-
tive di↵erence in masses is strongest for the hottest clusters,
for which the S14 conversion results in the largest change.
Because the I14 sample exhibits a limited TX range of 3–
6 keV, the relative change of the temperatures varies less
than 5 %. Consequently, the two sets of hydrostatic masses
are well fit by a linear relation (solid line in Fig. 2):

Mxmm
500

1014M�
= P · MCXO

500

1014M�
+ Q (5)

with P = 0.783± 0.007 and Q = 0.062± 0.015 that cap-
tures the dependence of the Chandra–XMM-Newton dis-
agreement on the measured mass itself. As a sample average
and standard error, we find 1�bxcal

lin =1�hMxmm
500 /MCXO

500 i=
0.81 ± 0.01. The di↵erence between this number and 1�
hTxmm(rwl

500)/TCXO(rwl
500)i = 0.15 ± 0.01 can be traced back

to the additional factor of TX

�
d ln TX(r)

d ln r

�
in Eq. (2).

2.5 Stronger WL mass bias for
pseudo-XMM-Newton masses

Figure 3 shows the measured bias between the WL masses
Mwl

500 and Mxmm
500 (including timestamp correction) for the

I14 clusters. The bias is measured by averaging hlog Mxmm�
log Mwli over the suite of Monte Carlo simulations described
in Sect. 2.2 that was used to obtain the Mxmm

500 measure-
ments. The results are shown in Table 1 and indicated by a

c� 2014 RAS, MNRAS 000, 1–8

HI +14b, assuming  
Schellenberger+14 conversion 



A larger hydro mass bias after conversion  

4 H. Israel et al.

Table 1. Observed mass bias in the I14 sample, for several choices of X-ray masses. Columns 2 and 3 give the slope P and intercept Q

of the general best-fit relation (Eq. 5) between Chandra and XMM-Newton masses. Column 4 shows the X-ray calibration bias, i.e. the

mean and standard error of hMxmm
500 /MCXO,I14

500 i. Columns 5 and 6 show the apparent bias with respect to the Chandra masses, averaged

over Monte Carlo simulations for all clusters (blog = hlog Mxmm
500 �log MCXO,I14

500 i) and for the Mwl
500 >1014.5 M� bin (blog,H). The final

column measures the mass-dependent mass bias as the di↵erence �bH�L
log between blog for the high- and low-mass clusters.

Hydrostatic mass P Q bxcal
lin blog blog,H �bH�L

log

MCXO
500 , new Monte Carlo 1 0 0 0.02+0.10

�0.08 �0.09+0.11
�0.10 �0.20+0.20

�0.16

MCXO
500 , incl. timestamp correction 0.946± 0.009 �0.002± 0.020 0.06± 0.00 �0.01+0.10

�0.09 �0.11± 0.11 �0.20+0.20
�0.16

Mxmm
500 , full conversion 0.783± 0.007 0.062± 0.015 0.19± 0.01 �0.08+0.10

�0.08 �0.19+0.11
�0.10 �0.21+0.20

�0.16

Mxmm
500 , temperature e↵ects only 0.799± 0.007 0.064± 0.015 0.17± 0.01 �0.07+0.10

�0.08 �0.18+0.11
�0.10 �0.21+0.20

�0.16

Mxmm
500 , no timestamp correction 0.826± 0.004 0.061± 0.007 0.15± 0.01 �0.05+0.10

�0.08 �0.16+0.11
�0.10 �0.21+0.20

�0.16

Figure 2. Mass estimates Mxmm
500 derived from pseudo-XMM-

Newton temperatures and assuming hydrostatic equilibrium as a
function of masses MCXO

500 derived from ICM temperatures ob-
served by Chandra. Error bars inscribed in the symbols denote
the uncertainty in Mxmm

500 due to the uncertainties in the ACIS–
combined XMM and timestamp conversions. For illustrative pur-
poses, the timestamp correction is not applied to the MCXO

500 , but
its inverse to the Mxmm

500 . The solid line marks the linear best
fit. A dashed line marks the best-fit relation when the di↵erent
Chandra calibration timestamps are not taken into account. For
the latter case, data points are not shown for the sake of clarity.

dashed line and shading for the 1� interval in Fig. 3. Dashed
lines and boxes at Mwl

500 6 1014.5 M� and Mwl
500 > 1014.5 M�

show the bias for the thus defined low- and high-mass sub-
samples.

For the eight clusters, we now find a pronounced bias of
blog =�0.08+0.10

�0.08, compared to blog = 0.02+0.10
�0.8 from Chan-

dra, using the updated Monte Carlo method. For the low-
mass sub-sample, Mxmm

500 and MWL
500 are consistent (blog =

0.02+0.16
�0.12); while for the high-mass sub-sample, we measure

blog = �0.19+0.11
�0.10, i.e. Mxmm

500 that are smaller than WL

masses by a similar amount as the MPl of vdL14 (cf. Fig. 3).

Figure 3. Ratio between the pseudo-XMM-Newton hydrostatic
mass Mxmm

500 , with timestamp correction, and the I14 WL mass
Mwl

500 as a function of Mwl
500. Short-dashed lines and light grey

shading denote the logarithmic bias blog = hlog Mxmm�log Mwli
obtained from averaging over Monte Carlo realisations. We also
show blog for the low-Mwl and high-Mwl clusters separately, with
the 1� uncertainties presented as boxes, for sake of clarity. As a
visual aid, a dot-dashed line depicts the Monte Carlo best-fit of
log (Mxmm/Mwl) as a function of Mwl. Empty symbols and the
triple-dot-dashed line denote the MCXO

500 case. Compare to Fig. 2A
in I14.

We repeat our analysis for a few modifications high-
lighting the relative importance of various contributing fac-
tors: First, we find that Chandra masses, converted to the
newer CalDB v4.2 and the 0.7–7 keV band are systemati-
cally lower than for the V09a calibration and energy range.
The Chandra-only timestamp calibration already accounts
for ⇠ 30 % of the di↵erence with XMM-Newton: blog =
�0.01+0.10

�0.09, a di↵erence of �blog =�0.03 (Table 1). This re-
sult is consistent with the higher masses the V09a pipeline
returns in the Rozo et al. (2014b,a) cross-calibration stud-
ies. Conversely, omitting the timestamps correction moves
up the Mxmm

500 , such that blog = �0.05+0.10
�0.08 is less negative

c� 2014 RAS, MNRAS 000, 1–8
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Ettori (2014) demonstrate, intrinsic scatter in the abscissa
mass leads to a mass-dependent bias when compared to an
independent mass observable.

We repeat our analysis excluding the Chandra time-
stamp variations (Sect. 2.3) and arrive at a lower apparent
bias compared to including them: blog = �0.06+0.15

�0.13 (Ta-
ble 1). The di↵erence between those two cases may serve
as an estimate for the systematic uncertainties in the obser-
vatory conversions.

Considering the full mass range, the XMM-Newton hy-
drostatic masses are ⇠ 20 % lower than the WL masses,
while Chandra masses are consistent with the WL masses.
This indicates that if the blin = 0.2 linear hydrostatic bias
in cluster simulations is correct, the e↵ective area calibra-
tion of XMM-Newton is consistent with being correct. But
if looking at the high mass end, the conclusion is the oppo-
site: Chandra is consistent with the correct calibration and
20 % hydro bias. The measurement uncertainties and the
unknown amount of Eddington bias in our small sample,
however, preclude more quantitative conclusions.

3 TRANSLATION TO PLANCK CLUSTERS

3.1 Comparison to Planck and vdL14 samples

The mean WL mass of the I14 clusters is 3.2 · 1014 M�,
while the mean WL mass of the high-mass sub-sample is
4.9 · 1014 M�. The typical P13XX cluster mass, defined by
their mass pivot ⇠ 6 · 1014 M�, falls into the mass range
probed by the I14 high-Mwl range, even although the mass
bias is not included. Therefore, for the relevant P13XX
mass range,our result of blog,H = 0.20+0.17

�0.16 agrees with the
1�blin ⇡ 0.4 that would reconcile cosmological constraints
derived from Planck cluster counts (P13XX) and primary
CMB anisotropies (P13XVI).

The high-mass end of the I14 sample also overlaps with
the vdL14 sample. Using the Mxmm

500 for the I14 clusters in-
stead of Chandra masses, we also find better agreement to
the vdL14 measurement of hMPl/Mwli = 0.688 ± 0.072 for
a subset of P13XX clusters. However, such comparisons are
limited by the small number statistics of our sample, hence
caution is necessary when interpreting these results.2

A first complication is that it has not been made pub-
lic which XMM-Newton instruments were considered in the
P13XXIX calibration. Another complication arises from the
temporal variability of X-ray calibrations. Our results for the
cases with and without timestamp correction (Table 1) tell
us, however, that the impact of those systematics is rather
small, with �blin.0.05.

3.2 How much can X-ray calibration bias have
influenced the P13XX results?

We attempt to estimate how an additional bias bxcallin arising
from the XMM-Newton calibration relative to Chandra will

2 The di↵erence in cosmologies between P13XX and vdL14 on
the one hand (flat universe with matter density ⌦m = 0.3 and
Hubble parameter H0=70 km s�1 Mpc�1) and I14 and this work
the other hand (the same, but H0 = 72 km s�1 Mpc�1) adds a
factor of 70/72 to convert Planck masses to our cosmology.

influence the overall bias measured by P13XX. We empha-
sise that we do not know or assume which, if any, satellite
calibration is correct. The “pre-calibration” from 20 relaxed
clusters (Arnaud et al. 2010) determines the normalisation
10B and slope � of a scaling relation

E�2/3(z)


YX

2 · 1014 M� keV

�
= 10B ·


MHE

500

6 · 1014 M�

��

(5)

between the YX and hydrostatic masses MHE
500 measured with

XMM-Newton. The evolution factor E(z) =H(z)/H(z=0)
depends on cosmology via the Hubble parameter H(z).

In Eq. (5), MHE
500 scales roughly as T 3/2

X (e.g., Kay et al.
2012), through the measurement at r500. If q=TXMM/TCXO

for the typical Arnaud et al. (2010) cluster, hydrostatic
masses are biased MHE

500 ! q�MHE
500, with � ⇡ 1.5. Similarly,

YX depends on TX via the measurement of the gas mass
Mgas within r500: We have r500 / M

1/3
500 . If M500 / T

3/2
X

upon a change in TX, then r500/ (T 3/2
X )1/3=T

1/2
X . Because

Mgas(< r) increases linearly with r in a given cluster3 it

follows Mgas,500 / T
1/2
X upon a change in TX. Indeed, we

measure Mgas,500 to be a↵ected as q0.5 to q0.6 by a relative
temperature change q, using the V09a gas density model for
the I14 clusters. Hence, we have YX ! q�YX with an expo-
nent �⇡1.5.

We assume we can use the temperature ratio q at a
typical TXMM and ignore its TXMM dependence.4 Then, the
temperature calibrations a↵ects Eq. (5) like:

q�YX/
⇥
q�MHE

500

⇤� , YX/q����
⇥
MHE

500

⇤�
. (6)

This means that for a (residual, unaccounted) temperature
bias q, the mass proxy MYX

500 will be biased by a factor q���� .
The main P13XX scaling relation

E�2/3(z)


D2

AYSZ,500

10�4 Mpc2

�
= 10A ·


MYX

500

6 · 1014 M�

�↵

(7)

relates the masses MYX
500 to Y500 instead of YX, with DA de-

noting the angular diameter distance. However, YX is the-
oretically expected to be proportional to YSZ, so we can
identify ↵=� and find a modified Eq. (7):

E�2/3(z)


D2

AYSZ,500

10�4 Mpc2

�
= 10Aq↵��� ·


MYX

500

6 · 1014 M�

�↵

. (8)

Given a bias factor q in the ICM temperatures, the calibra-
tion scaling relation will be o↵set by a factor C=q↵��� .

The properties of the local, relaxed galaxy clusters from
which Arnaud et al. (2010) calibrated Eq. (5) are given in
Arnaud, Pointecouteau & Pratt (2007); Pratt et al. (2010).
We measure an average kBTXMM ⇡ 5 ± 2 keV for the clus-
ters implicated to constitute the calibration sample. Follow-
ing Eq. (3), the S14 conversion for the combined XMM-
Newton instruments, Chandra temperatures for these clus-
ters would be lower by a factor of q=0.84+0.05

�0.03. With ↵=1.79

3 If the cluster is isothermal, and ⇢gas / r�2, as motivated by
assuming the standard �=2/3 in the � model for the gas density
(Cavaliere & Fusco-Femiano 1978), then the 3D mass within a

radius R is M(<R)=
R R

0
⇢gas(r) dV /

R R

0
r�2 r2 dr=R.

4 In principle, the TXMM-dependence should be considered. This
would alter the slope � in Eq. (5). While making an interesting
point, this would complicate this consideration of an extreme case.
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Planck Collaboration: Planck Legacy SZ

Fig. 15. Scatter of the recovered estimates of Y500 with
the input Y500. Top panel : for the marginalised Y500 pos-
terior, ‘Y blind’. Bottom panel : for the sliced posterior
p(Y500|θ500), assuming an accurate radius prior.

We used the masses for the confirmation of candidate
counterparts (see Sect. 7) and we provide them, along with
their errors, in the PSZ2 catalogue for all detections with
confirmed redshift. We compared them with the masses pro-
vided in PSZ1 for the detections where the associated coun-
terpart (and thus the redshift value) has not changed in the
new release (see Appendix B). We find very good agreement
between the two values which are consistent within the er-
ror bars over the whole mass range.

In the individual catalogues, we provide for all entries
an array of masses as a function of redshift (MSZ(z)), which
we obtained by intersecting the degeneracy curves with the
expected function for different redshift values, from z = 0
to z = 1. The aim of this function is to provide a useful
tool for counterpart searches: once a candidate counterpart
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Fig. 16. Illustration of the posterior probability contours
in the Y5R500 − θs plane for a cluster detected by Planck :
the contours show the 68, 95 and 99 percent confidence
levels. The red continuous line shows the ridge line of the
contours while the dashed lines the 1-σ probability value at
each θs. The cyan line is the expected Y − θ relation at a
given redshift that we use to break the degeneracy.

Table 3. Results of fits between S/N from the PSZ1 and
PSZ2, using the fitting function in Eq. 6. The assumed cor-
relation of the uncertainties of s1 and s2 was 0.72.

s1 s2 A α σ

PSZ2 PSZ1 0.76± 0.08 0.72 ± 0.01 0.53± 0.02

is identified, it is sufficient to interpolate the MSZ(z) curve
at the counterpart redshift to estimate its mass.

6. Consistency with the PSZ1

The extra data available in the construction of the PSZ2 im-
proves the detection S/N and reduces statistical errors in
the parameter and location estimates. Here we assess the
consistency between the two catalogues, given the matching
scheme discussed in Sect. 7.1.

6.1. Signal-to-noise

We fit the relation between S/N for common PSZ1 and
PSZ2 using the the approach and model discussed in Sect.
3.4. For the PSZ1 and PSZ2, the likelihoods for s1 and
s2 have a strong covariance, as more than half of the
PSZ2 observations were used in the construction of the
PSZ1. We therefore assign a covariance of 0.72 between
the two S/N estimates, as is appropriate for Gaussian er-
rors sharing 53% of the data. As the errors are not truly
Gaussian, we allow for an intrinsic scatter between the
S/N estimates to encapsulate any un-modelled component
of the S/N fluctuation.

The consistency of the S/N estimates between the
PSZ1 and PSZ2 are shown in Fig. 17 and the best fit-
ting model in is shown in Table 3. Detections with PSZ2
S/N > 20 are affected by changes in the MMF3 S/N defi-
nition. For the PSZ1, the empirical standard deviation of
the filtered patches was used to define the S/N in this

14
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by �blog =0.03. These comparisons demonstrate the impor-
tance of including the timestamp correction.

The 2 % di↵erence the masses experience due to the dif-
ferent flux calibration of Chandra and XMM-Newton relates
to a small, but measurable e↵ect in the logarithmic bias: Ig-
noring it, we find a slightly milder bias of blog =�0.07+0.10

�0.08

compared to the full conversion (blog =�0.08+0.10
�0.08).

Considering the full mass range, the XMM-Newton hy-
drostatic masses are ⇠ 20 % lower than the WL masses,
while Chandra masses are consistent with the WL masses.
This indicates that if the blin = 0.2 linear hydrostatic bias
in cluster simulations is correct, the e↵ective area calibra-
tion of XMM-Newton is consistent with being correct. But
if looking at the high mass end, the conclusion is the oppo-
site: Chandra is consistent with the correct calibration and
20 % hydro bias. The measurement uncertainties and the
unknown amount of Eddington bias in our small sample,
however, preclude more quantitative conclusions.

2.6 Mass-dependent bias with XMM-Newton

Finally, we measure the mass-dependence of the bias as the
di↵erence �bH�L

log between the logarithmic biases blog for
the high- and low-mass clusters. This observable is stable
against changes to the details of the probability distribution
modelling in the Monte Carlo algorithm. (Note that fitting
log (Mxmm/Mwl) as a function of Mwl is not stable.)

In I14, the hydrostatic mass exhibited the least signif-
icant mass-dependent bias of four tested mass observables.
For the four more massive clusters, blog is ⇠1� di↵erent to
the four less massive ones, as opposed to ⇠ 2�). We repro-
duce this result and measure �bH�L

log =�0.20+0.20
�0.16 for Chan-

dra and �bH�L
log =�0.21+0.20

�0.16 for XMM-Newton (Table 1).
We interpret the observed mass-dependence of blog as

the superposition of 1.) physical e↵ects, e.g. the stronger hy-
drostatic bias for high-mass clusters Shi & Komatsu (2014)
predict analytically, and 2.) Eddington bias: As Sereno &
Ettori (2014) demonstrate, intrinsic scatter in the abscissa
mass leads to a mass-dependent bias when compared to an
independent mass observable. Eddington bias is most severe
in our case of a small sample size and a narrow range in the
underlying true mass. In principle, the statistically complete
nature of the 400d cosmology (V09a) sample would allow
for a rigorous correction of such selection e↵ects, once the
WL follow-up has been completed. For our given subsam-
ple, the Eddington bias and true mass-dependent mass bias
cannot be disentangled. While we can provide much needed
relative cross-calibrations between X-ray and WL instru-
ments/pipelines, selection e↵ects preclude us from determin-
ing absolute calibrations for Chandra and XMM-Newton.
Moreover, selection biases also limit the direct applicability
of �bH�L

log to other cluster samples.

3 TRANSLATION TO PLANCK CLUSTERS

3.1 What did the Planck collaboration measure?

P13XX model the redshift-dependent abundance of clusters
detected from the Planck catalogue of Sunyaev-Zeldovich
sources (Planck Collaboration et al. 2013a, P13XXIX), cov-
ering the whole extragalactic sky. The thermal SZ e↵ect

Figure 4. The P13XX calibration sample. Diamonds and the
long-dashed fit line show the SZ signal as a function of original
P13XX YX mass (compare their Fig. A.1). Triangles and the solid
fit line show rescaled masses, assuming an extreme case of a mass-
dependent hydrostatic bias.

describes the inverse Compton scattering of CMB photons
with ICM electrons, resulting in a distortion YSZ of the
CMB signal in the solid angle subtended by a galaxy clus-
ter, proportional to the integrated electron pressure. All 189
S/N > 7 sources selected from the P13XXIX catalogue are
confirmed clusters of known redshift; the vast majority with
spectroscopic redshifts. The P13XXIX mass estimates MPl

(MYz in P13XXIX) that enter the P13XX calculation are
the only, and crucial, piece of Planck data P13XX use.

Due to the large beam compared to the typical Planck
cluster size, the aperture size ✓, in which YSZ is integrated, is
hard to determine from the SZ data itself. P13XXIX rely on
the additional YSZ(✓) constraint provided by the scaling of
YSZ with an X-ray mass proxy, MYX

500, to fix ✓ and calibrate
the MPl. By convention, r� denotes a radius such that the
mass M� within it exceeds the critical density ⇢c(z) at red-
shift z by a factor of �. The MYX

500 mass proxy is based on
YX =TXMgas, which is the product of the ICM temperature
TX and the cluster gas mass Mgas, measured from X-rays
within r500, and thus provides an X-ray analogue of YSZ.

P13XX calibrate MPl on a validation sub-sample of 71
clusters observed with XMM-Newton, i.e. they derive the
best-fit YSZ,500–MYX

500 relation. In turn, MYX
500 was calibrated

on a sample of local, relaxed clusters whose “true” masses
could be measured using X-ray observations and assuming
hydrostatic equilibrium (Arnaud et al. 2010). All EPIC in-
struments were used, with the pn/MOS normalisation as a
free parameter. Spectra were fitted in the 0.3–10 keV energy
band (M. Arnaud; priv. comm.). It is via this ladder of mass
proxies that the hydrostatic mass bias is inherited onto MPl,
appearing in the YSZ,500–MYX

500 relation that summarises the
calibration process (Eq. A.8 of P13XX). P13XX considered
a flat prior of 0.7<(1�blin)<1, but any additional system-
atic e↵ect in the calibration chain would mimic a spurious
“hydrostatic” bias.

3.2 Comparison to Planck and vdL14 samples

The mean WL mass of the I14 high-mass sub-sample is
4.9 · 1014 M�. The typical P13XX cluster mass, defined by

c� 2014 RAS, MNRAS 000, 1–8

14 

HI+14b 



Eddington bias and large scatter in WL masses 

CoMaLit-I 7

Table 4. Comparison of HE masses from independent analyses. For the CCCP-HE sample, we considered masses within rHE
500. Entries are as in Table 2.

CCCP-HE CLASH-XMM CLASH-CXO L13 B12

(11) (3) (3) (11) (6)
E10 0.22(±0.08) ⇠ 0.17 ⇠ �0.15 0.35(±0.14) 0.25(±0.10)

±0.28(±0.11) ±(⇠)0.06 ±(⇠)0.28 ±0.30(±0.09) ±0.19(±0.08)

(5) (6) (18) (5)
CCCP-HE — 0.03(±0.21) �0.38(±0.14) 0.12(±0.07) 0.24(±0.22)

±0.29(±0.16) ±0.34(±0.21) ±0.33(±0.14) ±0.35(±0.17)

(18) (2) (10)
CLASH-XMM — — �0.38(±0.09) ⇠ �0.05 0.14(±0.15)

±0.35(±0.10) ±(⇠)0.18 ±0.46(±0.30)

(4) (12)
CLASH-CXO — — — ⇠ 0.31 0.45(±0.14)

±(⇠)0.01 ±0.37(±0.13)

(4)
L13 — — — — ⇠ 0.03

±(⇠)0.06
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Figure 3. Masses in the RA12 sample. Top panel: WL mass vs. HE mass.
Clusters are grouped in four bins in true mass (black points). Lower panel:
bias of the proxy as a function of the true mass. Black (blue) points corre-
spond to the bias of the WL (HE) mass. The solid error-bars denote the 1-�
uncertainties for the the central estimate. The dashed error-bars denote the
dispersion. All masses are computed within rTr

500.

niques, whose associated variance is negligible with respect to the
statistical uncertainty.

Larger variations are mainly related to different data-sets, see
Table 4. Discrepancies of order of & 30 per cent may be in place.
This may be the case for results based on Chandra (CLASH-CXO,
B12, L13) versus XMM analyses (E10, CLASH-XMM), whose
temperature estimates may disagree at large radii (Donahue et al.
2014).

Each method/analysis may systematically either under o over-
estimate the cluster mass. X-ray masses in the CLASH sample
based on Chandra (XMM) data are systematically larger (smaller)
than other estimates. On the other hand, masses from B12 and L13
are lower than other samples.

A significant role can be played by additional data-sets ex-
ploited in the analysis. The inclusion of SZ data, which are more
sensitive to the outer regions, might lower the mass values in B12.

The large differences in estimated masses and the large scat-
ters suggest that quoted formal statistical uncertainties in HE
masses, usually of the order of ⇠10–15 per cent, might be under-
estimated.

5 REGRESSION RESULTS

We measured biases and intrinsic scatters of WL and HE masses
through the statistical model detailed in Sec. 2. To simplify the
analysis, we assumed that the lensing and the hydrostatic masses
scale linearly with the true mass, �WL = 1 and �HE = 1.

The true masses are known only in simulations. For ob-
served samples, we could estimate only the relative bias between
WL and HE masses and we fixed ↵WL = 0. The effective bias
MHE,WL/MTr can be defined as exp(↵HE,WL). The relative bias
MHE/MWL can be defined as exp(↵HE �↵WL). Bias and scatter
are largely uncorrelated. We tested that results do not change if we
consider ↵HE = 0 rather than ↵WL = 0.

The intrinsic distribution of the independent variable, lnMTr,
was approximated with a Gaussian function of mean µ and stan-
dard deviation ⌧ , as suitable for flux selected samples of rich clus-
ters (Andreon & Bergé 2012; Sereno, Ettori & Moscardini 2014).
We tested that results based on more complex distributions, such

c� 0000 RAS, MNRAS 000, 000–000
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Figure 4. Comparison of WL and HE masses for the RA12 sample. Masses are measured within rTr
500, the over-density radius related to the true mass. In the

left (right) panels, clusters are grouped in 4 bins according to their measured WL (HE) mass. Green points mark the results for the clusters simulated according
to the analytical model discussed in the paper. Top left panel: MWL

500 vs. MHE
500 . Black points marks clusters binned in MWL

500 . Errors bars for the binned points
plot the dispersion around the central value. Bottom left: logarithm of MHE

500/M
WL
500 as a function of MWL

500 . The solid error-bars denote the 1-� uncertainties
for the the central estimate. The dashed error-bars denote the dispersion. Top right panel: MHE

500 vs. MWL
500 . Black points marks clusters binned in MHE

500 .
Bottom right: logarithm of MHE

500/M
WL
500 as a function of MHE

500 .

Table 6. Biases and intrinsic scatters of the WL and the HE mass. Col. 1: sample; col. 2: number of clusters in the sample, Ncl; cols. 3, 4: radius within which
the WL lensing and the HE mass were computed; col. 5: effective ratio between the true mass and the WL mass; the WL mass is assumed to be an unbiased
proxy; col. 6: intrinsic scatter on lnMWL

500 /MTr
500; cols. 7, 8: effective ratio MHE

500/M
Tr
500 and intrinsic scatter (as in col. 6). Quoted values are bi-weight

estimators of the posterior probability distribution.

Sample Ncl rWL rHE MWL
500 /MTr

500 �WL MHE
500/M

Tr
500 �HE

RA12 60 rTr
500 rTr

500 1 0.14± 0.04 0.75± 0.03 0.13± 0.04

CCCP 50 rWL
500 rWL

500 1 0.14± 0.06 0.85± 0.05 0.24± 0.07

CCCP-Cool Core 16 rWL
500 rWL

500 1 0.18± 0.10 0.93± 0.11 0.24± 0.12

CCCP-Low Offset 20 rWL
500 rWL

500 1 0.18± 0.10 0.82± 0.09 0.30± 0.11

CCCP 50 rWL
500 rHE

500 1 0.20± 0.09 0.81± 0.07 0.45± 0.07

CLASH-CXO 20 rWL
500 rHE

500 1 0.17± 0.09 0.78± 0.09 0.34± 0.12

CLASH-CXO-Cool Core 9 rWL
500 rHE

500 1 0.22± 0.14 0.77± 0.14 0.31± 0.17

CLASH-CXO-Low Offset 8 rWL
500 rHE

500 1 0.31± 0.17 0.70± 0.15 0.34± 0.17

CLASH-XMM 16 rWL
500 rHE

500 1 0.17± 0.10 0.56± 0.08 0.45± 0.14

WTG-L13 14 rWL
500 rHE

500 1 0.32± 0.14 0.64± 0.09 0.16± 0.08

WTG-B12 14 rWL
500 rHE

500 1 0.19± 0.12 0.47± 0.07 0.34± 0.15

c� 0000 RAS, MNRAS 000, 000–000
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Compilation of literature results on 
WL and X-ray cluster masses by 
Sereno & Ettrori (2014). 



Conclusions 
 

•  Hydrostatic mass bias  of ~40% instead of ~20% (simulations) 
suggested to reconcile Planck cluster number counts and CMB. 

•  HI+14 find no >20% mass bias, using Chandra, less massive clusters. 
•  Schellenberger+14 confirm strong instrument-dependence of 

measured ICM temperatures. 
•  Converting Chandra masses to XMM, HSE masses decrease by ~20 %. 
•  Comparing WL and pseudo-XMM hydro masses for the 400d clusters, 

we find ~-5% for low mass clusters, ~35% for high-mass clusters. 
•  A combination of slightly higher mass bias than expected and X-ray 

calibration issues might contribute to Planck discrepancy. 
•  An increase of bhyd with mass counteracts the calibration effect.  
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