Improving Cross-Calibration

Herman Marshall (MIT) Moderator

The Charge

- In-flight data show discrepancies
 - Cluster temperatures and fluxes
 - Blazar fluxes from simultaneous observations
 - SNR line fluxes
- Missions characterize systematic uncertainties internally and independently
- Assuming we *should*, how does IACHEC *change* a mission's calibration?

The Politics

- Ground cal sets initial instrument parameters
 - Effectiveness depends on funding
 - Cal is limited to available instruments
- Flight cal depends on mission priorities
 - Is 3-5% of time acceptable/allowable?
 - Users drive need for agreement of missions
 - Managers require benefit to project, limiting cross-cal

A Proposal

- Attend/read Prof. Meng's presentation (Wed. 9:00AM)
 - Start with C_{ij} = Counts for mission i (1..N), source j (1..M)
 - Assume "true" areas A_i, "true" fluxes F_i
 - Estimate F_j by $f_j = C_{ij} / a_i$ ($a_i = 1$ st estimate of A_i)
 - Method determines "best" \underline{F}_{j} , computes w, and "better" $\underline{a}_{i} = a_{i}^{w} (C_{ij}/\underline{F}_{j})^{1-w}$, brings f_{j} closer *but not precisely* to \underline{F}_{j}
 - w = 1/(1+M τ^2/σ^2), τ = "a priori" st.dev. in ln(a), σ = st. dev. in ln(C_{ij})
 - w = 0 means instrument is very uncertain
- IACHEC team sets t for each instrument, runs Meng's analysis
 - IACHEC team recommends changes from a_i to \underline{a}_i
 - Process runs for each of many bandpasses "independently"

Sample Variances

