

Current Status of the Hard X-ray Modulation Telescope Project

Xiaobo Li, on behalf of the HXMT team Institute of High Energy Physics, CAS 11th IACHEC @ Pune

Outline:

- 1. Introduction to the Payloads
- 2. Scientific objectives of HXMT
- 3. Ground calibration and simulation of instruments
- 4. Data flow and development of calibration database
- 5. Summary

1.Science payloads

The high energy Instrument

≻18 identical detecting modules , a collimator is equipped in front of each module to form the field of view (FOV)

≻18 anticoincidence detectors (6 top +12 side)

>18 calibration detectors(automatic gain control)

≻3 particle monitors

FOV size	number	
1.1°×5.7°	15	
5.7°×5.7°	2	measure CXB
Covered (2mm Ta)	1	measure particle background

Detecting modules

anticoincidence detectors

The medium energy Instrument

The low energy Instrument

size	number
1.6° ×6°	60
4° ×6°	18
Covered (1mm Al)	6
50~60° $ imes$ 2~6° (sky monitor)	6

LE consists of 3 detector boxes, and each boxes contains 32 SCDs.

Effective Areas of HXMT instruments

2.Scientific objectives

broad band X-ray survey; detection of new sources, especially for burst objects.

Observe fast X-ray variability and spectra in black hole systems and investigate fundamental physical processes in strong gravitational field.

study the X-ray timing characteristic of neutron stars.

HXMT simulation

- Target: Crab
- Model: wabs*powerlaw
- Exposure: 1372 s

- Target: Cygnus X-1
- Model: highecut(powerlaw)

data and folded model

• Exposure: 2.05Ms

	nH (10^21 cm ⁻²)	PhoIndex
нхмт	3.446 ± 0.030	2.1079 ± 0.0016
ХММ	3.45 ± 0.02	2.108 ± 0.006

IN 26-H80		E _{cut} (keV)	E _{fold} (keV)	Г
	НХМТ	7.63 ± 0.05	154.19 ± 0.23	1.43004 ± 0.00017
	INTEGRAL	<=12	155 ± 4	1.43 ± 0.01

3.Ground Calibration and simulation of instruments

- X-ray double crystal monochromator and radioactive sources are used, supplemented by Geant4 simulation
 - Energy to Channel relation
 - Energy resolution
 - Quantum efficiency
 - Timing
 - Point Spread Function
 - Temperature effect and instrument settings
- Calibration products are generated and saved in HEASARC CALDB format.
- Calibration software for users is under integrated test.

HE

Efficiency

Energy Resolution

PSF simulation

LE

Full energy peak varies with temperature

PSF simulation

Chn0 PSF

4. Data flow and development of CALDB

ARF and RMF file for LE

Two e LE:	event gr	ades fo	or dif	Energy resolution @ different temperature					Two RMFs was used in (-80, - 20) degree.						
> Si	21						📕 Te	mp_LO	Temp_HI						
> Beconstructed split						alit 🔹		Select 1	E	1E					
			s-						E All					_	
ev	rents		v-				*		Invert Mo	dify	M	lodif	ý		
			s-			4		-	1 -8.000	000E+01	-3.50	000	0E+0	1	
			8 <i>1</i> 2					-	2 –3.500	000E+01	-2.00	000	0E+0	1	
			u-					1 "							
			13 4	5	6	Index	Extension	Туре	Dimension			Vi	ew		
File Edit T	ools Help					0	Primary	Image	0	He	eader	Imag	je	Т	able
Index	Extension	Туре	Dimension		View	1	MATRIX	Binary	6 cols X 4500 row	'S He	eader H	ist	Plot	Ali	Select
0	Primary	Image	0	Header	Image	2	MATRIX	Binary	6 cols X 4500 row	's He	eader H	ist	Plot	Ali	Select
1	SPECRESP	Binary	3 cols X 4500 rows	Header	Hist Plo	3	MATRIX	Binary	6 cols X 4500 row	's He	eader H	ist	Plot	Ali	Select
2	SPECRESP	Binary	3 cols X 4500 rows	Header	Hist Plo	4	MATRIX	Binary	6 cols X 4500 row	'S He	eader H	ist	Plot	All	Select
						5	TempInterval	Binary	2 cols X 2 rows	He	eader H	ist	Plot	All	Select

				TELESCOP=	'HXMT		/	telescope name
TELESCOP:	' HXMT	,	/ telescope name	INSTRUME =	'LE		· · · /	instrument name
INSTRUME -	· 'LE	· ·	/ instrument name	DETNAM =	'LE		· · · /	detector name
)ETNAM =	LE	,	/ detector name	FILTER =	' NONE		- 7	filter name
TLTER -	'NONE	· · · ·	/ filter name	DETCHANS=			512 /	' total number of detector channels
CLS0001:	BOF	,	/ This is a Basic Calibration File	TEMPN =			2 /	'Number of Temperature Section
DUCI ASS.	. / OCTD	,	/ format deviced by the OCTB	CHANTYPE=	'PI	1	/	Detector Channel Type in use (PHA or PI)
	· 001F	,	/ Deter There	CCLS0001=	'BCF	1	1	This is a Basic Calibration File
DIPO001:	DATA		/ Data Type	HDUCLASS=	'OGIP	1	/	format devised by the OGIP
CCNMUUU1:	ARFGr	adeU'	<u>/ Dataset code name</u>	CDTP0001=	' DATA	1	1	Data Type
:VSD0001:	: '2014-	12-02′	/ Data when dataset becomes valid	CCNM0001=	'RMFGra	ade0 Temp0	· /	Dataset code name
VST0001:	: '16:00	:001	/ Time when dataset becomes valid	CVSD0001=	2014-1	.2-02'	1	Data when dataset becomes valid
DES0001:	LE SP	ECRESP'	/ Description	CVST0001=	16:00:	007	/	'Time when dataset becomes valid
IATE :	· /2014-	12-03m10+12+15	/ file creation data (YYYY-MM-DDThhommoss UT)	CDES0001=	'LE Mat	rix'	/	Description
	2011	18 00110.18.10	, 1110 010001011 0000 (1111 111 DD11111.000 01)	DATE =	$^{\prime}2014-1$	2-03T10:1	2:15'	/ file creation data (YYYY-MM-DDThh:mm:ss UT)

Flight models is ready!

