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Systematic errors in calibration are important, and 
must be dealt with, either by working to eliminate 
them, or by providing people with means to deal 
with them: these are the two main goals of this WG. 
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Schedule
• Mar 1, WG meeting, 9:00am-10:45am IST

• Intro to WG and pyBLoCXS, Vinay Kashyap

• RMF parameterization, Konrad Dennerl

• Intro to Cal Concordance, Herman Marshall

• Updates to XSPEC, Keith Arnaud [skype]

• Status of Cal Concordance Project, Yang Chen/Xufei Wang/Xiao-Li Meng [skype]

• Discussion

• Mar 2, Improving Cross-Calibration Status, 9:45am-12:45pm IST

• Monte Carlo constraints on instrument calibration, Jeremy Drake

• NuSTAR and PyBlocks, Kristin Madsen [skype]

• Panel Discussion: what next?
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Calibration has 
Uncertainties

• The fundamental equation of observational astronomy 

C(i,j,k1,k2,tf,Δt;θ) = ∫ dt ∫ dxdy ∫ dE ⋅ f(x,y,E,t;θ)  

R(t,tf) PSF(x,y,E;t) RMF(E,k;x,y,t) ARF(E;x,y,t) 

• Calibration analysis inverts the usual analysis method 

• Given ARF, RMF, PSF, evaluate expected model 
spectrum to compare with observed counts 

• Given known model spectrum, compare with observed 
counts to evaluate ARF, RMF, PSF
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Calibration has Uncertainties
• How to find the uncertainties? 

• Once known, how to account for them? 

• And then how to minimize them? 
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• How to find and tabulate the uncertainties? 

• MCCal 

• Once known, how to account for them? 

• pyBLoCXS 

• And then how to minimize them? 

• Concordance

Calibration has Uncertainties
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pyBLoCXS
Vinay Kashyap (CXC/CfA) 

David van Dyk, Hyunsook Lee, Jin Xu, Jeremy Drake, Pete Ratzlaff, Alanna Connors, et al.

MCMC scheme to incorporate defined calibration uncertainty into analysis
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Simulated = Nominal + Bias + randomized components + residuals



fitting to simulated data  
f(ε;θ) = θ₃ ε–θ₁ e–θ₂ σ(ε)

— Jin Xu and Shandong Min
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fitting to simulated data  
f(ε;θ) = θ₃ ε–θ₁ e–θ₂ σ(ε)

p(θ|D,A₀) p(A) p(θ|D,A) p(A,θ|D)

p(θ|D,Ai) p(A(θ’),θ|D)

— Jin Xu and Shandong Min
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pyBLoCXS resources

• Lee et al. 2011, Accounting for Calibration Uncertainties in X-ray 
Analysis: Effective Areas in Spectral Fitting, ApJ 731, 126 
[2011ApJ...731..126L]

• Xu et al. 2014, A Fully Bayesian Method for Jointly Fitting 
Instrumental Calibration and X-Ray Spectral Models, ApJ 794 97X 
[2014ApJ...794...97X]

• Sherpa (PragBayes): http://cxc.harvard.edu/sherpa/ahelp/
pyblocxs.html

• github (FullBayes): https://github.com/astrostat/pyblocxs

• tutorial from IACHEC 2014: http://hea-www.harvard.edu/AstroStat/
Demo/pyBLoCXS/IACHEC2014/
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