Intro to Calibration Concordance

Herman Marshall (MIT) and the Harvard AstroStats Group

The Charge

- In-flight data show discrepancies
 - Cluster temperatures and fluxes
 - Blazar fluxes from simultaneous observations
 - SNR line fluxes
- Missions characterize systematic uncertainties internally and independently
- Assuming we *should*, how does IACHEC *change* a mission's calibration?

A Proposal

- Attend/read Prof. Meng's presentation (Wed. 9:00AM)
 - Start with C_{ij} = Counts for instrument i (1..N), source j (1..M)
 - Assume "true" areas A_i, "true" fluxes F_i
 - Estimate F_j by $f_j = C_{ij} / a_i$ ($a_i = 1$ st estimate of A_i)
 - Method determines "best" \underline{E}_j , computes w, and "better" $\underline{a}_i = a_i^w (C_{ij}/\underline{E}_j)^{1-w}$, brings f_j closer *but not precisely* to \underline{E}_j
 - w = 1/(1+M τ^2/σ^2), τ = "a priori" st.dev. in ln(a), σ = st. dev. in ln(C_{ij})
 - w = 0 means instrument is very uncertain
- IACHEC team sets τ for each instrument, runs Meng's analysis
 - IACHEC team recommends changes from a_i to \underline{a}_i
 - Process runs for each of many bandpasses "independently"

Practical Considerations

- What does an instrument *actually* do?
 - Measure counts, C_k in channel k
 - Response function gives k(E) mapping
 - Assume exposure times are extremely precise
- How do we *actually* measure fluxes?
 - Forward folding of model, test against C_k
 - Excise regions of pileup using PSF, obs'd data: factor Φ_{ij}
 - Flux definition: $N(E) = N q(E;\alpha)$, α is uninteresting parameter
 - Need same assumed (fitted) α across instruments
- What do we actually fix?
 - Assume $A(E) = A \rho(E)$, where A is target of adjustment

Expected Counts of instrument *i* source *j*, C_{ij}

- The effective area $A_i(E) = A_i \rho_i(E)$, where only A_i is unknown and $\rho_i(E)$ is a fixed function estimated empirically for $E \in [E_1, E_2]$.
- The flux $F_j = \int_{E_1}^{E_2} n(E; \theta_j) dE = N_j \int_{E_1}^{E_2} q(E|\theta_j^*) dE$, where $n(E; \theta_j)$ is the spectrum of source j at energy E. $q(E|\theta_j^*)$ is known.
- The response matrix function r_{ik}(E) is the probability that a photon with energy E comes to channel k through instrument i; known.
- The exposure time for instrument *i* source *j*, T_{ij} , is measured precisely.

$$C_{ij} = \sum_{\substack{\underline{E}_1 \\ \kappa_i \leq k \leq \frac{E_2}{\kappa_i}}} T_{ij} \int r_{ik}(E) A_i(E) n(E;\theta_j) dE$$

$$= \mathcal{A}_i N_j \bigg[T_{ij} \times \int_{E_1}^{E_2} \rho_i(E) q(E|\theta_j^*) \sum_{\substack{\underline{E}_1 \\ \kappa_i \leq k \leq \frac{E_2}{\kappa_i}}} r_{ik}(E) dE \bigg].$$

< ㅁ > < 部 > < 골 > < 골 >

Gamma_pn

XMM XCAL Data Handling

Gamma ph

XMM XCAL Data Handling

