Seeking Effective Adjustments for Effective Areas

Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

Joint work with Vinay Kashyap, Herman Marshall, David van Dyk, Matteo Guainazzi, Paul Plucinsky

March 1, 2016

Recap of the Problem

Astrostat
2/28
Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

Problem: Systematic errors in comparing effective areas.

Notations:

- Instruments $\{1 \leq i \leq N\}$ with attributes $\left\{A_{i}, 1 \leq i \leq N\right\}$.
- Sources $\{1 \leq j \leq M\}$ with fluxes $\left\{F_{j}, 1 \leq j \leq M\right\}$.
- Photon Counts $\left\{C_{i j}=A_{i} F_{j}, 1 \leq i \leq N, 1 \leq j \leq M\right\}$ obtained from measuring flux F_{j} using effective area A_{i}.

Original Questions:

(1) How to adjust $\left\{A_{i}, 1 \leq i \leq N\right\}$ such that
$\left\{C_{i j} / A_{i}, 1 \leq i \leq N\right\}$, the estimated F_{j} using observed values, agree with F_{j} within statistical uncertainty?
(2) How to estimate the systematic error on the A_{i} 's?

Basic Model - Estimand Level

log-scale linear additive model

We start by noting a trivial fact that $C_{i j}=A_{i} F_{j}$ is mathematically equivalent to

$$
\begin{equation*}
\log C_{i j}=\log A_{i}+\log F_{j}=B_{i}+G_{j} \tag{1}
\end{equation*}
$$

where $B_{i}=\log A_{i}, G_{j}=\log F_{j}$.
However, this relationship holds at the estimand level, not at the estimator/observation level.

- Upper case: estimand $\left(A_{i}, F_{j}, B_{i}, G_{j}\right)$.
- Lower case: estimators / observations $\left(c_{i j}, a_{i}, b_{i}\right)$.

Basic Model - Observation Level

Astrostat
4/28
Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

Problem Description

Bayesian Hierarchical Model
Hierarchical log-Normal Model

Hierarchical regression model:

$$
\begin{equation*}
y_{i j}=\log \left(c_{i j}\right)=\alpha_{i j}+B_{i}+G_{j}+\epsilon_{i j} \tag{2}
\end{equation*}
$$

where $\epsilon_{i j} \sim \mathcal{N}\left(0, \sigma_{i j}^{2}\right)$ independently; $i \in\{1, \ldots, N\}$; $j \in J_{i}=\left\{1 \leq j \leq M: c_{i j}\right.$ is observed $\}$.

Half-variance Correction:

$\alpha_{i j}=-0.5 \sigma_{i j}^{2}$ is necessary to guarantee

$$
E\left(c_{i j}\right)=C_{i j}=\exp \left(B_{i}+G_{j}\right)=A_{i} F_{j} .
$$

Priors:
The prior for G_{j} is flat in \mathbb{R}.
The prior for B_{i} is a Gaussian $\mathcal{N}\left(b_{i}, \tau_{i}^{2}\right) . b_{i}=\log a_{i}$ is known.

Complications with Real Data

A multiplicative factor due to pile-up

Let $Z_{i j}$ be the constant adjusting for the pile-up effect.

$$
C_{i j}=Z_{i j} A_{i} F_{j}=Z_{i j} \exp \left(B_{i}+G_{j}\right)
$$

$Z_{i j}$ is an observed constant and

$$
y_{i j}=\log \left(c_{i j}\right)-\log \left(Z_{i j}\right)=\alpha_{i j}+B_{i}+G_{j}+\epsilon_{i j}
$$

We only need to replace $y_{i j}=\log \left(c_{i j}\right)$ with $\log \left(c_{i j} / Z_{i j}\right)$.

Model Fitting: identifiability assumptions

Astrostat
6/28

Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

To estimate the B_{i} 's and G_{j} 's using observed data, we need to make assumptions on the variances to make sure the model is identifiable. Next, we will be focusing on three major assumptions which are practically reasonable.
(1) Known variance: $\sigma_{i j}^{2}$ and τ_{i}^{2} are known constants.
(2) Unknown instrumental variance: the noise term $\epsilon_{i j}$ only depends on the instrument-wise noise, i.e. $\sigma_{i j}^{2}=\omega_{i}^{2}$ with known τ_{i}^{2};
(3) Unknown instrumental variance with unknown $\tau_{i}^{2}=\tau^{2}$ for $1 \leq i \leq N$.

Astrostat
7/28
Presenter:
Xiao-Li Meng
Yang Chen,
Xufei Wang

Problem Description

Bayesian Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Real data examples

For model fitting, we calculate the maximum a posteriori estimation (MAP) for each model.

Besides, we also obtain the full posterior by Gibbs sampling and Hamiltonian Monte Carlo (HMC).

Simulation Experiment 1

- Number of instruments: $\mathrm{N}=3$.

Problem Description

Bayesian
Hierarchical Model

- Number of Sources: $\mathrm{M}=100$.
- True values: $B_{i}=\log (5)=1.61, G_{j}=\log (3)=1.10$.
- Variances: $\sigma_{i j}=0.1 ; \tau_{i}=0.1 ; 1 \leq i \leq N ; 1 \leq j \leq M$.

$N=3, M=100$, Effective Area (log)

Astrostat 9/28

Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

Problem Description

Bayesian
Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Model 1 B 1

Model 2 B 1

Model 3 B 1

Model 1 B 2

Model 2 B 2

Model 3 B 2

Model 1 B 3

Model 2 B 3

$N=3, M=100$, Flux (log)

Astrostat
10/28
Presenter:
Xiao-Li Meng Yang Chen,
Xufei Wang

Problem

Description

Bayesian
Hierarchical

Model

Hierarchical
log-Normal
Model
Simulation Experiments

Real data examples

Model 1 G 1

Model 2 G 1

Model 3 G 1

Model 1 G 2

Model 2 G 2

Model 3 G 2

Model 3 G 3

Model 1 G 4

Model 2 G 4

Model 3 G 4

$N=3, M=100$, Flux (log)

Astrostat
11/28

Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

Problem

Description

Bayesian
Hierarchical Model
Hierarchical
log-Normal Model

Simulation Experiments

Real data examples

Model 1 G 5

Model 2 G 5

Model 3 G 5

Model 1 G 6

Model 2 G 6

Model 3 G 6

Model 1 G 7

Model 2 G 7

Model 3 G 7

Model 1 G 8

Model 2 G 8

Model 3 G 8

$N=3, M=100$, Flux (log)

Astrostat
12/28

Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

Problem

Description

Bayesian
Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Real data examples

Model 1 G 9

Model 2 G 9

Model 3 G 9

Model 1 G 10

Model 2 G 10

Model 3 G 10

Model 1 G 11

Model 2 G 11

Model 3 G 11

$$
\begin{array}{c|c}
i & : \\
i & \\
\vdots & \\
\vdots & \\
\vdots & \\
\hline & \\
\hline 0.6 & 1.0 \\
\hline & 1.4 \\
\hline
\end{array}
$$

Model 1 G 12

Model 2 G 12

Model 3 G 12

$N=3, M=100$, Flux (log)

Astrostat
13/28

Presenter: Xiao-Li Meng Yang Chen,
Xufei Wang

Problem

Description

Bayesian

Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Real data examples

Model 1 G 13

Model 2 G 13

Model 3 G 13

Model 1 G 14

Model 2 G 14

Model 3 G 15

Model 1 G 16

Model 2 G 16

Model 3 G 16

Simulation Experiment 2

- Number of instruments: $\mathrm{N}=13$.

Problem Description

Bayesian
Hierarchical Model

- Number of Sources: $\mathrm{M}=5$.
- True values: $B_{i}=\log (5)=1.61, G_{j}=\log (3)=1.10$.
- Variances: $\sigma_{i j}=0.1 ; \tau_{i}=0.1 ; 1 \leq i \leq N ; 1 \leq j \leq M$.

$N=13, M=5$, Effective Area (log)

Astrostat
15/28
Presenter:
Xiao-Li Meng Yang Chen,
Xufei Wang

Problem Description

Bayesian
Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Real data examples

Model 1 B 1

Model 2 B 1

Model 3 B 1

Model 1 B 2

Model 2 B 2

Model 3 B 2

Model 1 B 3

Model 2 B 3

Model 3 B 3

Model 1 B 4

Model 2 B 4

Model 3 B 4

$N=13, M=5$, Effective Area (log)

Astrostat
16/28
Presenter:
Xiao-Li Meng Yang Chen,
Xufei Wang

Problem Description

Bayesian
Hierarchical Model
Hierarchical

log-Normal

 ModelSimulation Experiments

Real data examples

Model 1 B 5

Model 2 B 5

Model 3 B 5

Model 1 B 6

Model 2 B 6

Model 1 B 7

Model 2 B 7

Model 3 B 6

Model 3 B 7

Model 1 B 8

Model 2 B 8

Model 3 B 8

$N=13, M=5$, Effective Area (\log)

Astrostat 17/28

Presenter: Xiao-Li Meng Yang Chen,
Xufei Wang

Problem Description

Bayesian
Hierarchical Model
Hierarchical

log-Normal

 ModelSimulation Experiments

Real data examples

Model 1 B 9

Model 1 B 10

Model 2 B 10

Model 3 B 10

Model 1 B 11

Model 2 B 11

Model 3 B 11

Model 1 B 12

Model 2 B 12

Model 3 B 12

$N=13, M=5$, Flux (log)

Astrostat
18/28

Presenter: Xiao-Li Meng Yang Chen,
Xufei Wang

Problem Description

Bayesian
Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Real data examples

Model 1 G 1

Model 2 G 1

$\begin{array}{llll}0.8 & 1.0 & 1.2 & 1.4\end{array}$

Model 3 G 1

Model 1 G 2

$\begin{array}{llll}0.8 & 1.0 & 1.2 & 1.4\end{array}$

Model 2 G 2

$\begin{array}{llll}0.8 & 1.0 & 1.2 & 1.4\end{array}$

Model 3 G 2

Model 1 G 3

$\begin{array}{llll}0.8 & 1.0 & 1.2 & 1.4\end{array}$

Model 2 G 3

$\begin{array}{llll}0.8 & 1.0 & 1.2 & 1.4\end{array}$

Model 3 G 3

$\begin{array}{llll}0.8 & 1.0 & 1.2 & 1.4\end{array}$

Model 1 G 4

$\begin{array}{llll}0.8 & 1.0 & 1.2 & 1.4\end{array}$

Model 2 G 4

$\begin{array}{llll}0.8 & 1.0 & 1.2 & 1.4\end{array}$

Model 3 G 4

Model 1 G 5

Model 2 G 5

Model 3 G 5

Real Data 1 (E0102 Data)

Astrostat
19/28
Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

Problem Description

Bayesian Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Real data examples

- Data Provided by: Paul Plucinsky, Vinay Kashyap.
- Number of instruments: $\mathrm{N}=13$.
- Number of Sources: $\mathrm{M}=5$.
- Source Names: 'const', 'O7', 'O8', 'Ne9', 'Ne10'.
- Instrument Names:
'XMM/RGS1', 'XMM/MOS1', 'XMM/MOS2', 'XMM/pn', 'ACIS-S3', 'ACIS-I3', 'ACIS/HETG', 'Suzaku/XIS0', 'Suzaku/XIS1', 'Suzaku/XIS2', 'Suzaku/XIS3', 'Swift/XRT-WT', 'Swift/XRT-PC'.

E0102 data Results ($\mathrm{N}=13, \mathrm{M}=5$, known variance)

Astrostat 20/28

Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

Problem Description

Bayesian Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Real data examples

XMM/RGS1

XMM/MOS1

XMM/MOS2

XMM/pn

ACIS-S3

ACIS-I3

ACIS/HETG

Suzaku/XISO

Suzaku/XIS1

Suzaku/XIS2

Suzaku/XIS3

Swift/XRT-WT

Swift/XRT-PC

\qquad
\qquad

\qquad
\qquad
\qquad

E0102 data Results ($\mathrm{N}=13, \mathrm{M}=5$, unknown variance)

Astrostat

Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

Problem Description

Bayesian Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Real data examples

XMM/RGS1

XMM/MOS1

XMM/MOS2

XMM/pn

ACIS-S3

ACIS-I3

ACIS/HETG

Suzaku/XISO

Suzaku/XIS1

Suzaku/XIS2

Suzaku/XIS3

Swift/XRT-WT

Swift/XRT-PC

Real Data 2 (2XMM Data)

Astrostat
22/28
Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

- Data Provided by: Herman Marshall \& Matteo Guainazzi.
- Number of instruments: $\mathrm{N}=3$. 'pn', 'mos1', 'mos2'.
- Number of Sources: $\mathrm{M}=35$ (hard band); $\mathrm{M}=39$ (medium band); $\mathrm{M}=34$ (soft band).
- Source Names (hard band):

RXJ0944.5+0357, HolmbergIX, 4C06.41, 1127-145, NGC4278, LBQS1228+1116, MS1229.2+6430, XCOMAE, XCOMAE, ESO323-G077, PKSB1334-127, NGC5252, PG1407+265, RBS1423, CenX-4, UZLIB, RXJ0136.9-3510, NGC6251, MS0205.7+3509, NGC7172, M31NN1, NGC1313, XComae, XComae, XComae, NGC5204X-1, NGC5204X-1, GRB080411, RXJ0228-40, PKS0237-23, RBS1055, V410Tau, V410Tau, VB50, 1E0919+515.

2XMM Data Results (Hard, Medium, Soft Band)

Hierarchical
log-Normal Model

Simulation Experiments

Real data examples

pn hard band

mos1 hard band
mos2 hard band
pn med band
mos1 soft band
mos2 soft band

mos1 med band
mos2 med band
pn soft band

2XMM Data Results (Hard, Medium, Soft Band)

Bayesian

Hierarchical

Model
Hierarchical

log-Normal

Model

Simulation
Experiments

Real data examples

Real Data 3

Astrostat
25/28
Presenter: Xiao-Li Meng Yang Chen, Xufei Wang

- Data Provided by: Herman Marshall \& Matteo Guainazzi.
- Number of instruments: $\mathrm{N}=3$. 'pn', 'mos1', 'mos2'.
- Number of Sources: $\mathrm{M}=94$ (hard band); $\mathrm{M}=103$ (medium band); $M=108$ (soft band).
- Source Names (hard band):

21 unique ones (total 94): 3C111, PKS2155-304, 3C120, 1H1219+301, H1426+428, 3C273, MKN501, PKS0558-504, 4U0543-31, Ark120, NGC526A, EXO0748-676, 1H0414+009, TON1388, PKS0548-322, 1ES1101-232, H2356-309, H1426+484, PG1116+215, Mkn501, 1ES1553+11.3.

Preliminary Results (Real Data 3)

Astrostat
26/28

Presenter:
Xiao-Li Meng
Yang Chen,
Xufei Wang

Problem
Description
Bayesian Hierarchical Model
Hierarchical
log-Normal Model

Simulation Experiments

Real data examples

pn hard band

mos1 hard band
mos2 hard band
pn med band
mos1 med band
mos2 med band
pn soft band
mos1 soft band
mos2 soft band

Ongoing and Future Work

- Real data 3 by Herman Marshall \& Matteo Guainazzi.
- Robustness to 'Outliers'.
- Poisson Model - observations are counts.
- Sensitivity of 'Priors'.

Astrostat
28/28
Presenter:
Xiao-Li Meng
Yang Chen,
Xufei Wang

Problem Description

Bayesian Hierarchical Model
Hierarchical log-Normal Model

Simulation Experiments

Real data examples

Questions?

Contact:

- Yang Chen: yangchen@fas.harvard.edu
- Xufei Wang: xufeiwang@fas.harvard.edu
- Xiaoli Meng: meng@stat.harvard.edu

