Solar wind Magnetosphere Ionosphere Link Explorer: Soft X-ray Imager (SMILE-SXI)

Steve Sembay

SMILE-SXI PI

Department of Physics and Astronomy

University of Leicester, UK

On behalf of the SMILE-SXI collaboration

IACHEC, ICUAA Pune, India

ESA-CAS joint mission

- Call issued in January 2015
- Small class mission
- Small spacecraft (<300 kg) and payload (<60 kg)
- 13 proposals received by deadline of 16 March 2015
- SMILE recommended in June 2015 by a joint European and Chinese scientific committee as candidate for a collaborative science mission with launch now planned Q3 2021
- SMILE formally selected by ESA SPC in November 2015
- SMILE Mission Joint Co-PIs: Graziella Branduardi-Raymont, MSSL, UK Chi Wang, NSSC, China

SMILE scientific objectives

- Investigate the dynamic response of the Earth's magnetosphere to the solar wind impact in a unique and global manner
- Combine Solar Wind Charge eXchange (SWCX) X-ray imaging of the dayside magnetosheath and the cusps with simultaneous UV imaging of the northern aurora, while monitoring the solar wind conditions in situ
- → Full chain of events that drive Sun-Earth relationships: dayside reconnection / magnetospheric substorm cycle / CME-driven storms

29th February, 2016

Reconnection in the Earth's magnetosphere

Reconnection at magnetopause and in the tail drive plasma dynamics

• Also drives motions in the ionosphere

29th February, 2016

IACHEC, ICUAA Pune, India

Magnetospheric Solar Wind Charge eXchange (SWCX)

SWCX: Heavy solar wind ions, A, in collision with neutral target atoms, B

$$A^{q+} + B \rightarrow A^{(q-1)+*} + B^{+}$$

 $A^{(q-1)+*} \rightarrow A^{(q-1)+} + hv$

$$P_X = \eta_H \eta_{SW} v_{av} \alpha$$

where:
$$P_X = \text{emissivity}$$

$$\eta = \text{number density}$$

$$\alpha = \text{scale factor}$$

 $3k_BT$

X-ray power depends on SW density and velocity and exosphere density

Efficiency factor α depends on CX X-sections and SW heavy ion and target neutral composition

 $\alpha \sim 9.4 \text{ x } 10^{-16} \text{ eV } \text{cm}^2$ (slow wind) $\alpha \sim 3.3 \text{ x } 10^{-16} \text{ eV } \text{cm}^2$ (fast wind)

Exosphere model (Hodges 1994)

 v_{av}

29th February, 2016

MHD Model CX Emissivity: POV at 20 $\rm R_{\rm E}$ T. Sun, NSSC

MHD Model CX Emissivity: POV at 20 $\rm R_{\rm E}$ T. Sun, NSSC

History: ROSAT PSPC LEO All-Sky Survey, 1990

ROSAT ¼ keV Survey Pre-cleaning

ROSAT ¼ keV Survey Post-cleaning

29th February, 2016

IACHEC, ICUAA Pune, India

Example XMM Spectra: Narrow FOV LOS through magnetosheath (similar spectra from Suzaku in LEO)

SMILE-SXI simulated observations: SMILE orbit ~ 50 hours, 19 R_F Apogee, 1R_F Perigee

Coronal Mass Ejection interaction: 31 March 2001

Soft X-ray Imager – Basic configuration

29th February, 2016

Optics – Lobster-eye Micropore Optics (MPO)

Square-packed 20 μ m pores, 6 μ m walls

Manufactured (Photonis) as glass plates, typically 4x4 cm, 1mm thick, heat-slumped to required radius of curvature

> Plates glued onto frame to build FOV. 1mm overlap. Low mass: Flight optic ~ 1kg

Optics – Space Instrumentation Heritage

MIXS (MIXS-T and MIXS-C) instruments on ESA/JAXA BepiColombo mission to Mercury, Launch 2017, arrival 2024. MIXS PI institute UoL

MIXS-T: Radially-packed MPOs in Wolter Geometry MIXS-C: Square-packed MPOs employed as collimators. MPOs slumped to 55 cm ROC, detector at distance equal to slump radius

DXL/STORM Module. PI Michael Collier, NASA/GSFC

Flew on DXL sounding rocket flight, December 2012

First Lobster-eye MPO telescope to be launched into space. Detected X-rays from soft X-ray background. Successfully recovered despite abnormal vibration during launch.

Detector plane – CCD

Baseline – 2x2 array e2v CCD270

e2v CCD270 – PLATO (ESA M3) derivative Native 4510 x 4510 18 μm pixels Native Image area 8.12 x 8.12 cm Back-illuminated 2-node readout available Operated with asymmetric frame store 6 x binning giving 108 μm pixels Baseline ~1s frame time PLATO: ESA M3 exoplanet mission 36 cameras, each with 2x2 array of CCDs

SMILE leverages work done for PLATO on CCDs and readout electronics

SMILE-SXI CCDs optimised for X-ray detection e.g. no AR coating

Detector plane – Comparative sizes (to scale)

29th February, 2016

IACHEC, ICUAA Pune, India

Instrument Response

Predicted SXI performance

$\label{eq:Nsw:23.74 cm^3} \begin{array}{c} V_{sw} : 641.12 \ km \ s^1 \\ Position : 8.58 \ 5.16 \ 17.03 \ GSE \end{array}$

Aim Point: 8.48 0.00 0.00 GSE

SWCX at magnetosheath peak Energy range 0.1 to 2.0 keV Pixel = 1.0 degrees

Component	Rate (cts s ⁻¹ pixel ⁻¹)
SWCX	0.03
Sky Background	0.12
Particle Background	0.02
Average point sources	0.0015
Time for pixel > 3σ	1700 s

Component	Rate (cts s ⁻¹ pixel ⁻¹)
SWCX	0.70
Sky Background	0.12
Particle Background	0.02
Average point sources	0.0015
a Time for pixel > 3σ	15 s 17

Predicted SXI performance

Note on relative particle background:

- Estimated SXI particle background (continuum) is
 - ~ 0.024 cts cm⁻² s⁻¹ keV⁻¹
- Observed quiescent XMM EPIC-MOS particle bgd
 - ~ 0.0028 cts cm⁻² s⁻¹ keV⁻¹
- i.e. SXI factor ~ 10 higher than EPIC-MOS
- 1 cm² on SXI detector has grasp (FOV x Eff. Area) of
 - ~ 2.3 sq. degrees x 10 cm² = 23.3
- 1 cm² on MOS detector has grasp (FOV x Eff. Area) of
 - ~ 0.0048 sq. degrees x 450 cm² = 2.2
- i.e. X-ray diffuse flux to particle background ratio per detector pixel is similar in both instruments.

IACHEC, ICUAA Pune, Ind

SWCX at magnetosheath peak Energy range 0.1 to 2.0 keV Pixel = 1.0 degrees

Component	Rate (cts s ⁻¹ pixel ⁻¹)
SWCX	0.03
Sky Background	0.12
Particle Background	0.02
Average point sources	0.0015
Time for pixel > 3σ	1700 s

Component	Rate (cts s ⁻¹ pixel ⁻¹)
SWCX	0.70
Sky Background	0.12
Particle Background	0.02
Average point sources	0.0015
Time for pixel > 3σ	15 s 18

Nsw: 4.54 cm³ Vsw: 420.41 km s³ By: 8.56 nT Bz: -0.070 nT Nsw: 12.35 cm³ Vsw: 650.00 km s³ By: 23.89 nT Bz: -5.16 nT Position: 8.58 5.16 17.03 GSE Aim Point: 8.48 0.00 0.00 GSE MHD Smulation Counts (Bgd Subr.): 30.6 Processed: 30.6 Processed: 30.6 MHD Smulation Counts (Bgd Subr.): 30.6 Processed: 30.6

SMILE Orbit Simulator

Andy Read, University of Leicester

-> Deep coverage towards South Ecliptic Pole

Bright X-ray sources – SXI counts v on-time, example orbit

Bright X-ray sources – SXI counts v SXI on-time

Thankyou