Chandra Calibration Status

IACHEC Meeting - March 27, 2017

ACIS - Three Main Culprits Affecting Calibration

Effective Area

2

Contamination build-up

Energy (keV)

0.5

Gain and Spectral Resolution

normalized counts s⁻¹ keV⁻¹

0.01

Abell 1795

Blazars

Mkn 421 PKS 2111-304

E0102-72

ACIS Effective Area - Monitoring the Contamination Big Dither LETG/ACIS-S Observations of Mkn 421

ACIS FLIGHT FOCAL PLANE

Recent Observations Dec. 2015 Jul. 2016 Jan. 2017

Raster Scan of Abell 1795 on ACIS-I

April 2016 data

Three components to ACIS Contamination Model:

- Composition (C, O, and F)
- Time-dependence
- Spatial-dependence

Composition and Time-dependence

Comparison of present ACIS contamination mode (CALDB N0009) with the new and improved model (v9968 or soon to be CALDB 0010)

Abell 1795 (0.5-1.0 keV)

ACIS Effective Area

Abell 1795

External Calibration Source (ECS)

ACIS Gain - Time-Dependent Corrections

2016 ECS data - ACIS-S3 aim-point

Old tgain files:

32 by 32 pixel regions
every 3 months

New tgain files (effective Sep., 2016):

32 by 32 pixel regions
Every 6 months

ACIS Gain - Temperature-Dependent CTI Correction

- Two gain corrections are applied to ACIS data:
- Temperature-dependent CTI correction
- Time-dependent gain correction.

ACIS Spectral Resolution

Epoch 60 to 64, I3: -120.19C to -119.19C

The cal team is in the process of fitting ECS data taken over the course of mission with the goal of generating a set of time- and temperature-dependent scatter matrices.

Epoch 60 to 64, I3: -116.19C to -115.19C

HRC-I Calibration Status

Hard X-ray source - G21.5-09

HRC-I Calibration Status

Soft X-ray source - HZ43

LETG/HRC-S Calibration

The HRC-S QE is declining by 2-3% per year. This is corrected with annual additions to the set of time-dependent HRC-S QE maps.

The HRC-S QE map for 2016 will be released in the next CALDB.

LETG/HRC-S Calibration

There was a mis-match between the CIAO generated garf file for LETG/HRC-S data and the actual wavelength coverage of the data near the HRC-S plate edges. This will be corrected in the next CALDB release.

HRC Gain Calibration

HRC gain (HZ 43 calibration observations – zeroth order)

HRC-I

HRC-S

~10% gain loss per year

HRMA Calibration

Stability of Chandra Imaging

Matt Dahmer / Northrup Grumman

Present Calibration Work

ACIS

- Monitor contamination and release updates as required.
- Develop grid of time- and temperature-dependent rmfs.
- Investigate new gain calibration methods.
 HRC-I
- Monitor QE and gain loss.
- Update HRC-I QE to maintain cross-calibration with HRC-S.
- Update the HRC-I QE map.

HETG

 Determine if the transmission efficiencies of the m ≠ 1 orders need to be adjusted.

LETG/HRC-S

- Release improvements to the wavelength coverage in the GARF files.
- Revise HRC-S de-gap map correct slight off-set between plus/minus orders.
- Revise HRC-S gain map post HV change (2012).