What we learned we don't know from Hitomi

Adam Foster for the Hitomi Perseus Atomic Team

L. Gu, J. Kaastra, H. Odaka, R. Smith, M. Sawada, S. Nakashima, N. Ota, G. Brown, J. de Plaa & more

Line Ratio Diagnostics

Diagnostics lines at 4keV

		Iron				Sulphur		
Line	$\varepsilon_{\mathrm{SPEX}}$	$\varepsilon_{\mathrm{AtomDB}}$	$\varepsilon_{\mathrm{CHIANTI}}$	%	$\varepsilon_{\mathrm{SPEX}}$	$\varepsilon_{\mathrm{AtomDB}}$	$\varepsilon_{\mathrm{CHIANTI}}$	%
$Ly\alpha_2$	0.100	0.106	0.114	13.2	0.580	0.707	0.684	18.6
$Ly\alpha_1$	0.209	0.207	0.212	2.4	1.160	1.393	1.370	17.0
$\mathrm{He}\alpha_z$	0.826	0.908	0.758	18.2	0.084	0.098	0.061	44.0
$He\alpha_y$	0.544	0.545	0.516	5.3	0.026	0.031	0.021	38.5
$\mathrm{He}\alpha_x$	0.491	0.510	0.472	7.7	0.012	0.014	0.010	33.3
$\mathrm{He}\alpha_w$	2.568	2.513	2.440	5.1	0.294	0.299	0.269	10.2
G ratio	0.725	0.781	0.716	9.0	0.415	0.478	0.342	32.8
R ratio	0.798	0.861	0.767	11.7	2.211	2.178	1.968	11.1
$\mathrm{Ly}\alpha/\mathrm{He}\alpha_w$	0.120	0.125	0.134	10.7	5.918	7.023	7.636	24.5

A SPEX 4keV G-ratio → 9.1keV in AtomDB

A Chianti 4keV G-ratio → 11keV in AtomDB

In flight calibration: Hitomi Atomic Data Paper

Model	kT	Si	Fe
Baseline	2.74	0.91	0.828
Pre-launch SPEX	0.263	0.03	-0.243
Pre-launch APEC	-0.039	-0.24	-0.047
APEC V3.0.8	0.071	-0.10	-0.134
2CIE	_	-0.12	0.024
no AGN	0.523	-0.01	-0.206
No gain correction	0.01	-0.13	-0.008

12% change in S abundance

14% change in Fe abundance

Also studied the effects of:

- Different models
- · Line shapes
- Fixing Line Ratios
- Collision Strengths

- Atomic code, astrophysical modelling, and instrumental calibration have overall similar contribution to the error budget.
- Atomic code improved dramatically after the launch (some key updates triggered by the atomic paper itself).
- Still the uncertainty on collisional excitation is 10-20%@4 keV (might be larger at lower- or higher- energies).
- Laboratory work needed.

This was the easy stuff

H-like and He-like Fe are the simplest systems!

This is the easy stuff!

H-like and He-like Fe are the simplest systems!

Lurking below 2keV/in longer observations:

- Fe L-shell lines (wavelength, intesity, identification)
 - Ionization balance?
 - Line identification?
 - Driving processes?
 - Dielectronic satellite lines (wavelength, intensity)

We need significant Ground Calibration for Atomic Data!

Summary: What don't we know

- Ionization rates, esp. at high energies
- Collisional excitation of strong diagnostic lines
- Inner-shell excitation and fluorescence yields
- All of the above * lots for non-Fe
- Dielectronic Satellite lines wavelength, flux

Lorentz Workshop

Dear Adam,

We have been analyzing our spectrum and your model is worse than SPEX. [Why] is your code wrong?

Yours, Baffled Scientist

Lorentz Workshop

Dear Adam,

We have been analyzing our spectrum and your model is worse than SPEX. [Why] is your code wrong?

Yours, Baffled Scientist

Dear Adam,

We have been analyzing our spectrum and your model is worse than SPEX. Your code is wrong.

Yours, Angry Scientist • Produce series of easily comparable outputs:

CIE Plasma	NEI plasma	Photoionized Plasma
Charge State Distribution	Charge State Distribution	Charge State Distribution
Radiated X-ray Power	Strong Line List	Strong Lines
Strong Line List	Continuum Spectrum	Heating and Cooling Rates
Line Populating Processes		Absorption Spectrum

• Post in simple ASCII formats for users to access