Chandra ACIS-I3 Response Width

Terry Gaetz

Chandra X-ray Center/Smithsonian Astrophysical Observatory

IACHEC 2017

T. Gaetz (CXC/SAO)

Chandra ACIS-I3 Response Width

IACHEC 2017 1 / 14

• • • • • • • •

Introduction

- degradation of thermal blankets ⇒ more and more difficult to maintain cold focal plane
- last few years, more observations with some or all of the exposure at elevated temperatures
- study how ACIS response depends on focal plane temperature using ECS data
 - combine ECS data for Epochs 60, 61, 62, 63, 64
 - slice into temperature intervals (currently, 1° C wide);
 - initial study:
 - -120.19 to -119.19
 - -118.19 to -117.19
 - -116.19 to -115.19
 - where sufficient data is available, fit the ECS lines (width parameters scaled and tied so that of Al-Kα width)
 - fit Al-K α width vs. chipy (per node)

Introduction

- degradation of thermal blankets ⇒ more and more difficult to maintain cold focal plane
- last few years, more observations with some or all of the exposure at elevated temperatures
- study how ACIS response depends on focal plane temperature using ECS data
 - combine ECS data for Epochs 60, 61, 62, 63, 64
 - slice into temperature intervals (currently, 1° C wide);
 - initial study:
 - -120.19 to -119.19
 - -118.19 to -117.19
 - -116.19 to -115.19
 - where sufficient data is available, fit the ECS lines (width parameters scaled and tied so that of Al-Kα width)
 - fit Al-K α width vs. chipy (per node)

イロト イポト イヨト イヨト

- p2_resp
 - ideal (undamaged) CCD response matrix (basic CCD physics: escape peak, shoulders, etc.)
 - "scatter matrix" (response broadening due to CTI)
- det_gain
 - pha of response peak \Rightarrow Energy
 - \bullet pha \Rightarrow
- p2_resp and det_gain tightly coupled:
 - $p2_resp + det_gain \Rightarrow rn$
 - rmf peak vs chipx, chipy, energy \Rightarrow det_gain
- p2_resp and det_gain calibrated using (Epoch 1) External Calibration Source (ECS) spectra

< = > < = > < = > < =</p>

- p2_resp
 - ideal (undamaged) CCD response matrix (basic CCD physics: escape peak, shoulders, etc.)
 - "scatter matrix" (response broadening due to CTI)
- det_gain
 - pha of response peak \Rightarrow Energy
 - pha \Rightarrow Energy \Rightarrow pi
- p2_resp and det_gain tightly coupled:
 - rmf peak vs chipx, chipy, energy \Rightarrow det_gain
- p2_resp and det_gain calibrated using (Epoch 1) External Calibration Source (ECS) spectra

・ 同下 ・ ヨト ・ ヨ

- p2_resp
 - ideal (undamaged) CCD response matrix (basic CCD physics: escape peak, shoulders, etc.)
 - "scatter matrix" (response broadening due to CTI)
- det_gain
 - pha of response peak \Rightarrow Energy
 - pha \Rightarrow Energy \Rightarrow pi
- p2_resp and det_gain tightly coupled:
 - p2_resp + det_gain \Rightarrow rmf
 - rmf peak vs chipx, chipy, energy $\Rightarrow \texttt{det}_\texttt{gain}$
- p2_resp and det_gain calibrated using (Epoch 1) External Calibration Source (ECS) spectra

イロト イポト イヨト イヨト

- p2_resp
 - ideal (undamaged) CCD response matrix (basic CCD physics: escape peak, shoulders, etc.)
 - "scatter matrix" (response broadening due to CTI)
- det_gain
 - pha of response peak \Rightarrow Energy
 - pha \Rightarrow Energy \Rightarrow pi
- p2_resp and det_gain tightly coupled:
 - p2_resp + det_gain \Rightarrow rmf
 - rmf peak vs chipx, chipy, energy \Rightarrow det_gain
- p2_resp and det_gain calibrated using (Epoch 1) External Calibration Source (ECS) spectra

イロト イポト イヨト イヨト

FI CCD CTI Scatter matrix:

- 256×32 tiles (chip coords):
- PHACHAN(pha channel [ADU])
 - 40, 60, 80, 100, 128, 180, 230, 300, 380, 460, 512, 670, 1025, 1535, 2050, 3100
- L1_WIDTH [ADU] for each (PHACHAN)

• K α , K β lines for Al, Ti, and Mn, covering $\sim 1.5 - 6$ keV.

200

 FI chip scatter matrix: broadening by an asymmetric Lorentz function

$$egin{aligned} \mathcal{R}_{scat}(E) &= 1 / \left[1 + \left[\left(E - E_0
ight) / \Delta(E_0)
ight]^lpha
ight]^lpha \ & ext{where} \ lpha &= egin{cases} 3.70 & ext{for } E < E_0 \ 1.90 & ext{for } E > E_0 \end{aligned}$$

ECS spectra using

- asymmetric Lorentz function broadening profile (Xspec local model)
- RMF without CTI broadening

Fitting ECS data

Fit main ECS lines (plus $\Gamma = 0.2$ powerlaw for background): AlK_{α,β}, TiK_{α,β}, MnK_{α,β} (+ NiK_{α})

Width function:

$$\Delta \propto \left(E_0^{0.12} + 0.3 \, E_0 \right) \tag{1}$$

Allow $\Delta_{Al-K\alpha}$ to vary; tie the rest to $\Delta_{Al-K\alpha}$ using Eq. (1):

$$\begin{array}{rcl} \Delta_{Al-K\alpha} & : \ \Delta_{Ti-K\alpha} & : \ \Delta_{Ti-K\beta} & : \ \Delta_{Mn-K\alpha} & : \ \Delta_{Mn-K\beta} \\ 1 & : \ 1.7066 & : \ 1.7995 & : \ 2.0312 & : \ 2.1397 \end{array}$$

 $K\beta$ line energies tied to $K\alpha$ line energies (multiplicative factor); can probably be relaxed for high quality data.

Line norm: AI-K β = 0.01 AI-K α

Some Representative Fits

Epoch 1, -120.19 to -119.19

13, node 3, 32 rows adjacent to framestore

e001: 119-120: c3n3_00

Some Representative Fits

Epoch 1, -120.19 to -119.19 I3, node 3, 32 rows, middle of the chip

e001: 119-120: c3n3_15

DQC

Some Representative Fits

Epoch 1, -120.19 to -119.19 I3, node 3, 32 rows far edge of the chip

e001: 119-120: c3n3_31

T. Gaetz (CXC/SAO)

Chandra ACIS-I3 Response Width

IACHEC 2017 8 / 14

Fit Width vs. chipy (4th degree Chebyshev)

Epoch 1, I3: -119.19C to -120.19C

Al-K α width vs. chipy

9/14

- degradation of thermal blankets ⇒ more and more difficult to maintain cold focal plane
- study how ACIS response depends on focal plane temperature using ECS data
 - combine ECS data for Epochs 60, 61, 62, 63, 64
 - slice into temperature intervals (currently, 1° C wide);
 - initial study:
 - -120.19 to -119.19
 - -118.19 to -117.19
 - -116.19 to -115.19
 - where sufficient data is available, fit the ECS lines (width parameters scaled and tied so that of Al-Kα width)
 - fit Al-Kα width vs. chipy (per node)

イロト イポト イヨト イヨト

I3 node 3: 32 rows adjacent to edge opposite to framestore Epoch 1, -120.19 to -119.19

e001: 119-120: c3n3_31

I3 node 3: 32 rows adjacent to edge opposite to framestore Epoch 60 to 64, -118.19 to -117.19

e060_061_062_063_064: 117-118: c3n3_31

I3 node 3: 32 rows adjacent to edge opposite to framestore Epoch 60 to 64, -116.19 to -115.19

e060_061_062_063_064: 115-116: c3n3_31

Variation vs. Focal Plane Temperature

12/14

Variation vs. Focal Plane Temperature

Variation vs. Focal Plane Temperature

Variation vs. Focal Plane Temperature

- Scatter matrix tabulates width △ in ADU vs. PHA
- ECS fits give $\Delta(E)$ at energy of Al-K α

So,

For each node and tile:

- Δ (Al-K α) $\Rightarrow \Delta$ (*E*) using width function, $\Delta \propto (E_0^{0.12} + 0.3 E_0)$
- $E_{chan} \Rightarrow phachan using det_gain$
- map $\Delta(E_{chan}) \Rightarrow \Delta(ADU)$ using det_gain

Inject new L1_WIDTH into appropriate p2_resp rows.

Investigated response width vs:

- o node
- chipy
- focal plane temperature
- Preliminary results
 - Modest dependence on time?
 - Stronger dependence on focal plane temperature
- To be done:
 - examine intermediate times (say, every 5 years
 - examine other temperatures
 - look at finer chipx gridding for p2_resp (with finer gridding in the matching det_gain)
 - construct modified p2_resp (and det_gain?)