

Athena calibration plans

M.Guainazzi, J.de Bruijne (ESA/SCI-S, ESTEC, Noordwijk, The Netherlands) J.W. den Herder (SRON, Utrecht, The Netherlands)

With contributions by: The Athena Telescope Working Group (Chair: R.Willingale) F.Pajot (X-IFU) A.Rau, M.Fryberg (WFI)

ESA UNCLASSIFIED - For Official Use

ATHENA

Advanced Telescope for High-ENergy Astrophysics

Spatially-resolved X-ray spectroscopy and deep, wide-field X-ray spectral imaging

- X-ray Integral Field Unit (X-IFU) for high-spectral resolution imaging
- Wide Field Imager (WFI) for high count rate, moderate resolution spectroscopy over a large field of view

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

_ II ⊾ :: ■ + II ■ ½ _ II II _ _ Z := 12 ₩ ... (0 II _ Z := 13 ₩ ...

(Barret et al., 2013, SF2A-2013, 447)

Parameter	Requirements	Enabling technology/comments		
Effective Area	$2 \text{ m}^2 @ 1 \text{ keV} (\text{goal } 2.5 \text{ m}^2)$	Silicon Pore Optics developed by		
	$0.25 \text{ m}^2 @ 6 \text{ keV} (\text{goal } 0.3 \text{ m}^2)$	ESA. Single telescope: 3 m outer		
		diameter, 12 m fixed focal length.		
Angular Resolution	5'' (goal 3") on-axis	Detailed analysis of error budget		
	10" at 25 ' radius	confirms that a performance of 5"	1 0	
		HEW is feasible.	сар	
Energy Range	$0.3-12 \mathrm{keV}$	Grazing incidence optics.		
Instrument Field of View	Wide-Field Imager: (WFI): 40'	Large area DEPFET Active Pixel		
	(goal 50')	Sensors.		
	X-ray Integral Field Unit: (X-IFU):	Large array of multiplexed Transi-		
	5' (goal 7')	tion Edge Sensors (TES) with 250		
		$\mu { m m}$ pixels.		
Spectral Resolution	WFI: $< 150 \text{ eV} @ 6 \text{ keV}$	Large area DEPFET Active Pixel Sensors.		
	X-IFU: $2.5 \text{ eV} @ 6 \text{ keV}$ (goal 1.5 eV			
	@ 1 keV)			
Count Rate Capability	> 1 Crab (WFI)	Fast Detector for high count rates		
		without pile-up and with micro-		
		second time resolution.		
	10 mCrab, point source (X-IFU)	Filters and beam diffuser enable		
	$1 \operatorname{Crab} (30\% \text{ throughput})$	higher count rate capability with re-		
		duced spectral resolution.		
TOO Response	4 hours (goal 2 hours) for 50% of	Slew times < 2 hours feasible; total		
	time	response time dependent on ground		
		system issues.		

+ defocusing capability

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

- Athena mirror calibration plan
- X-IFU calibration plan
- WFI calibration plan

Primarily still ground-based plan.

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

- Athena mirror calibration plan
- X-IFU calibration plan
- WFI calibration plan

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

□ II ≥ II = + II = ⊆ II II = Ξ = H = 0 II = II = H

Silicon Pore Optics technology

System (cosine.nl) over the last decade

angular resolution arc seconds

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

*

SPO terminology

Courtesy M.Bavdaz (ESA/ESTEC)

SPO mirror stack (35 plates)

Mirror Module (MM)

Mirror Assembly Module (MAM) $\sim 10^3$ MMs

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

_ II ⊾ :: ■ + II ■ ½ _ II II _ _ II = ... II II ...

Telescope calibration requirements

Requirement	Total value	МАМ	
		value	
Focal length (on-ground)	10 mm	10 mm	
Focal length (in-flight)	1 mm	1 mm	
Platescale	0.2″	0.2″	
Optical axis (w.r.t. MA_PCS)	30″	30″	
Optical axis (w.r.t. sc_pcs)	30″	30″	
PSF HEW	2/2/10%	2/2/10%	
PSF 2-D shape	10″/2%	10″/2%	
Absolute effective area on-axis	10%	6%	
Absolute effective area off-axis	13%	9%	
Relative effective area on-axis	5% (X-IFU)	2%	
	3% (WFI)		
Relative effective area off-axis	5%	4%	
Relative effective area, fine structure	1%+TBD	1%	
Area stability with time (pre-launch)	2%	2%	
Area stability with time (post-launch)	2%	2%	
Stray light	5%	5%	

- Preliminary ...
- ... but already intensively discussed!
- Stemming from the Science Requirement (Document) + Mission Budget (Document)
- Under review by the A. Science Study Team, the Telescope Working Group, and the Instrument Teams
- Aiming at a consolidated version by the Preliminary Requirements Review (≥Nov 2017)

Matteo Guainazzi | Athena Calibrations | $12^{\rm th}$ IACHEC, 29 March 2017

= II 🛌 == += II == 🔚 == II II = = == 🖬 🛶 🚺 II == == H 💥 🙌

Telescope calibration: assumptions

- A physical model of the telescope plays a crucial role, based on a common open-access database and validated by experimental data
- No resources available to cover the whole calibration parameter space for each and all MMs – multi-tier, flexible approach required
- [implying careful control on the performance homogeneity, and the sub-sample properties vis-à-vis the parent sample]
- Identify parameters to be calibrated on-ground (*e.g.*, PSF large-scale 2-D structure) vs. in-flight (*e.g.*, contamination)

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

· = ■ ► = = + ■ = = = = ■ ■ = = = = ■ ■ ■ ■ = = = ₩

Optics database

Optics database

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

Calibration flow

- Process steps
- "Bulk verification/ calibration" = on all or a substantial fraction of MMs
- "Sub-assembly [detailed] calibration" = on some elements per row (~a few MMs)
- Integrated-MAM
 calibration for science
 performance assessment

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

Recommendations: flow & facilities

- MM assembly, alignment: synchrotron facility (*e.g.*, BessyII)
- Fine structure: long-baseline synchrotron beam with homogeneous full illumination with $\Delta E \le 1$ eV resolution on ~2 plates/row at, e.g., C, B, Si, Ir
- MM verification: A_{eff}, PSF, and FL measurements at 2 E on all MMs at a dedicated facility with good collimation, ~2 MM/day rate, close to MM production and/or MAM integration sites
- MM [detailed] calibration: A_{eff}, vignetting, PSF (on-/off-axis) at 5-10 E on ~4 MMs/row at long beam facility (2MMs/row spare; 2MMs/row back to flow)
- MAM calibration: Full characterization of science performance (A_{eff}, PSF in-/outfocus, vignetting, straylight, at ~2-10 E) at a long*er*-beam facility with ≥90% illumination (implying ≥800 m)

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

| = 11 k = = + 11 = ≝ = 11 11 = = = # → 0 11 = = # k | +|

- Athena mirror calibration plan
- X-IFU calibration plan
- WFI calibration plan

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

□ II ≥ II = + II = ⊆ □ II II = □ H = 0 II = II H = 0 H

X-IFU calibration

X-IFU is a very challenging instrument

- unprecedented energy resolution and large effective area requirements
 - ✓ 2.5 eV [1-7 KeV]
 - ✓ 0.1 m² [0.3 keV], 1.5 m² [1 keV], 0.17 m² [7 keV]
- 3840 micro-calorimeters
- cryogenic operations constraints 10^{4} × 15 10^{3} × 100 Effective area (cm²) x 10 10² X–IFU EPIC PN SXS NuSTAR 10^{1} 10 Energy (keV)

Energy scale :

- absolute: 0.4 eV [0.3 - 7keV]

Energy resolution (line spread function):

- energy resolution: 0.15 eV [0.3 - 7keV]

Effective area (QE)

- instrument QE: 4% [absolute, @1 keV]
- instrument QE: TBD% [relative over 0.5 10 keV]

Background

- non focused charged particle background: 2% TBC [100 ks, 9 arcmin², >1 keV]
- focused charged particle background: 10% TBC [100 ks, 9 arcmin², >1 keV]

Timing

dead time knowledge (1%)

X-IFU calibration strategy

	When							
	Component level	Subsystem level	X-IFU on SIB or mock-up PF	X-IFU on SIM	Spacecraft before launch	X-IFU in flight	Sky sources	Fundamental physics
Energy scale		✓ FPA + readout	✓ (reference)	check on MXS/⁵⁵Fe	check on MXS∕ ⁵⁵ Fe	✓ (final) using MXS	TBD	TBD
Energy resolution	✓ detector array	✓ FPA + readout	✓ (reference)	auto compatibility	compatibility w spacecraft	<mark>√ (final)</mark> on MXS/ ⁵⁵ Fe	TBD	TBD
Energy redistribution	✓ detector array	✓ FPA + readout	✔ (final)	health check on MXS/ ⁵⁵ Fe	health check on MXS/ ⁵⁵ Fe	health check on MXS/ ⁵⁵ Fe		
Quantum efficiency			overall check TBC				cross-calibratior including mirror	
detectors	✓ (final)	FPA level check TBC						
filters/window	✔ (final)							
contamination	✓ initial reference			✓ reference before launch	✓ reference before launch		✓	
Background	irradiation TBC	irradiation TBC FPA including CryoAC	modeling irradiation TBC		modeling	✓		GEANT4 physic validation
Straylight					modeling		\checkmark	
Timing		✓ Readout, MXS	✔ (final)				check TBC	

✓ means measurements on FM hardware (✓ when critical or final)

Italics indicates activities linked to AIT/AIV

- Athena mirror calibration plan
- X-IFU calibration plan
- WFI calibration plan

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

ATHENA WFI Calibration Plan: devices and facilities

- WFI DEPFET device
- with internal calibration source: conservative approach: based on Fe-55, with dedicated target material
- with external optics module: 2 scientific instruments in focal plane and one large optics module \rightarrow tilted
- camera at PUMA facility at MPE
- optics samples (+ camera) at PANTER facility at MPE
- additional measurements at synchrotron facility (e.g., BESSY)

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

ATHENA WFI Calibration Plan: subjects

- Gain of each pixel of the detectors
- \bullet Spectral resolution and redistribution matrix
- Pattern fractions
- Quantum efficiency (incl. on-chip light-blocking filter)
- \bullet External filter transmission
- Spatial homogeneity
- Offset and noise maps
- Determination of internal ("Closed") background
- \bullet Relative and absolute timing accuracy
- Spatial resolution (sub-pixel)
- Point-spread function and pile-up effects in camera
- beyond WFI: PSF as such, effective area, vignetting, stray-light, ...
- in-flight: CalPV, cross-calibration (X-IFU?), routine monitoring

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017

Summary

- Athena Study Phase A \rightarrow achieve a consolidated set of calibration plans for the optics/instruments (requirement for PRR)
- Calibration requirements are in the definition phase

• Ideally, based on "reverse engineering" the science requirements using extensive simulations (heritage of the Monte-Carlo perturbation approach discussed also at the IACHEC)

- We aim at a comprehensive ground-based calibration plan. How much we can afford is a potential issue e.g., end-to-end test?
- Parallel effort to characterize the expected background conditions at L2 (vs. L1) is underway (see S.Molendi's presentation at the CCD WG)
- "*11 años no son nada*": now is the right time to bite the bullet!

Matteo Guainazzi | Athena Calibrations | 12th IACHEC, 29 March 2017