

FACULTY OF SCIENCE Institute for Astronomy and Astrophysics

Cross-calibrating the XMM EPIC effective areas for a default empirical correction

Cornelia Heinitz¹, Michael Smith², Chris Tenzer¹, Martin Stuhlinger²

 ¹ Institute for Astronomy and Astrophysics Kepler Center for Astro and Particle Physics University of Tübingen, Germany
² European Space Astronomy Centre (ESAC), ESA, Madrid, Spain

IACHEC, Lake Arrowhead 28 March 2017

1 Introduction: CORRAREA

2 Automation

3 Recalibration

- 3.1 Background Regions
- 3.2 Good-Time-Intervals
- 3.3 First New Fit
- 3.4 Pile-Up Check

4 Validation

- 4.1 Source Region Size
- 4.2 Nested Annuli
- 5 Outlook & Summary

1 Introduction: CORRAREA

- 2 Automation
- **3** Recalibration
 - 3.1 Background Regions
 - 3.2 Good-Time-Intervals
 - 3.3 First New Fit
 - 3.4 Pile-Up Check
- 4 Validation
 - 4.1 Source Region Size
 - 4.2 Nested Annuli
- 5 Outlook & Summary

MOS to pn flux ratios:

sample of 46 sources calculated with SAS v13.5 and according calibrations

Since SAS v14.0 (Guainazzi et al., 2014):

1

- non-default option applyxcaladjustment in SAS task arfgen
- empirically corrects the EPIC effective areas by an energydependent multiplicative factor
- **CORRAREA**: extension of the according constituents (XAREAEF) in the current calibration files (CCFs)
- → determine the relative cross-calibration accuracy of the on-axis effective areas
- → a tool to estimate the astrophysical impact that the systematic EPIC effective area uncertainties have

GOALS

- make it a default empirical correction in the future
- recalibration and further validation
- automation

- Starting point: Source selection, screening & stacking method according to Read et al. (2014)
- Sources selected from the XMM-Newton Serendipitous Source Catalogue, 2XMMi-DR3 (2010), with ~ 5000 observations up to October 2009:
 - (i) point-like
 - (ii) full frame mode
 - (iii) thin/medium filter
 - (iv) number of counts (0.2-12 keV: MOS > 5000, pn > 15 000)
 - (v) low count rate (MOS: 0.70 cts/s, pn: 6 cts/s)

1

- (vi) sources near on-axis (boresight-to-source distance < 2')
- (vii) out of the plane of the Galaxy (galactic latitude > 15 deg)
- Screen for crowded fields, short good time intervals (< 1 ks), close chip gaps & bad CCD columns, extended emission, chip loss

→ 46 sources, out of > 350 000 detections, with a total good time interval (GTI) exposure of 1751.9 ks

1

Stacked residual method:

- "stack and fit": model a stacked spectrum
- determine the residual ratio α: value for each energy bin would be unity if the cross-calibration of the effective areas was consistent

 pn chosen as reference instrument (appears to be extremely stable)

	OBSID	Rev		Count ra	te	Exn
	00000		$(0.2-10 \text{ keV}; \text{ s}^{-1})$			GTI
			Dn	MOS1	MOS2	(ks)
	0303340101	1102	3.07	0.62	0.63	44.7
	0084140501	0305	1.53	0.02	0.03	12.4
	0084140301	0393	1.40	0.44	0.44	25.2
	0200480101	0015	1.40	0.39	0.40	30.2
	0200430101	1120	1.00	0.38	0.39	17.6
	0106860101	0157	0.02	0.20	0.27	23.4
	0086360401	0230	1.11	0.31	0.30	25.4
	0086360301	0230	1.11	0.31	0.31	54.5
	0101441501	0410	1.68	0.42	0.42	37.1
	0101440601	0138	2 33	0.57	0.42	34.7
	0153250101	0615	1.00	0.39	0.38	54.7
	0300010301	1068	1.50	0.38	0.30	13.0
	0201200201	0812	0.00	0.38	0.39	18.0
	0112521001	0428	2.19	0.29	0.29	7.0
	01512021001	0428	0.71	0.08	0.09	16.2
	0112850201	0460	1.87	0.21	0.21	40.5
	0112830201	0565	2.02	0.00	0.00	28.1
	0205010101	0916	1.74	0.30	0.32	26.1
	0205630201	1102	1.74	0.47	0.40	01.4
	0124000101	0082	2.17	0.52	0.52	20.7
	0124900101	0082	1.47	0.00	0.01	29.1 56 A
	0204040501	0822	1.47	0.59	0.59	75.6
	0204040101	1120	1.95	0.52	0.52	75.0
	0306580101	0020	0.64	0.39	0.40	25.0
	0200580101	0939	1.50	0.17	0.17	30.9
	0147670201	0570	1.39	0.48	0.47	12.1
	0152940101	0000	0.72	0.45	0.45	39.4
	0205390501	0272	1.00	0.18	0.19	49.1
	0092850501	0373	1.09	0.28	0.28	38.9
	0207150401	0211	1.08	0.34	0.55	22.6
	0007750101	0127	1.25	0.51	0.52	23.0
	0100240701	0127	2.15	0.61	0.65	15.5
	0050540201	0420	2.18	0.64	0.00	12.4
	0140390101	0520	2.12	0.39	0.57	12.1
	0147920001	1201	2.12	0.07	0.09	12.1
	0402300901	1251	0.71	0.22	0.22	46.0
	0405090101	1233	1.52	0.28	0.28	90.1 60 F
	0304320201	1017	1.52	0.41	0.41	26.1
۱	0304320301	11100	1.40	0.57	0.57	27.9
)	0304320801	1189	1.98	0.52	0.52	21.8
	0405690501	1275	0.85	0.23	0.24	25.8
	0405690201	1272	1.15	0.51	0.32	30.1
	0510181/01	1528	1.59	0.51	0.52	44.6
	0502220301	1441	0.31	0.10	0.09	09.1
	0555020201	1558	2.16	0.60	0.61	24.9
	0555650201	1598	0.64	0.18	0.18	96.4
	0555650301	1599	0.63	0.17	0.17	92.8

1 Introduction: CORRAREA

2 Automation

- 3 Recalibration
 - 3.1 Background Regions
 - 3.2 Good-Time-Intervals
 - 3.3 First New Fit
 - 3.4 Pile-Up Check
- 4 Validation
 - 4.1 Source Region Size
 - 4.2 Nested Annuli
- 5 Outlook & Summary

Mainly done via bash, python & idl scripts:

- 1. initial data processing (analysis date flexible)
- 2. filter the event files with a **common GTI** file for each observation
- 3. create images for visual screening
- 4. eased region selection
- 5. create source and background **spectra**, as well as the Redistribution Matrix and Ancillary Response Files (RMFs and ARFs)
- 6. stacking for each detector:
 - source & background spectra: summing up counts per bin, summing up exposures, exposure-weighting BACKSCAL values
 - exposure-weighted RMFs and ARFs
- 7. phenomenological **reference model** fit to **pn data**:

 $wabs \times [power + power + Gauss + Gauss + Gauss] \times edge$

8. reference model convolved with the instrument responses of MOS1 and MOS2

pn fit: red. χ^2 is 1.08 for 1888 degrees of freedom calculated with SAS v13.5 and according calibrations

9. realignment of the residuals to a new, uniform energy grid

10.calculation of the residual ratio (with an optional SNR rebinning)

9. realignment of the residuals to a new, uniform energy grid

10.calculation of the residual ratio (with an optional SNR rebinning)

11. eased fitting of the residual ratio

current CORRAREA function:

 $R_i(E) = a_i + a_{pn} + b_i \times e^{-c_i \times e^{-d_i \times E}}$

 R_i : MOS to pn empirical correction factor

- *i*: MOS indices (1, 2)
- E: energy
- *a* ... *d*: best fit parameters

C. Heinitz | Cross-calibrating the XMM EPIC effective areas for a default empirical correction

- **1 Introduction: CORRAREA**
- 2 Automation

3 Recalibration

- 3.1 Background Regions
- 3.2 Good-Time-Intervals
- 3.3 First New Fit
- 3.4 Pile-Up Check
- 4 Validation
 - 4.1 Source Region Size
 - 4.2 Nested Annuli
- 5 Outlook & Summary

3.1 Background Regions

- so far: annulus (90-180") around the source taken as background
- some observations excluded due to the uniform region selection
- problem with the pn-background:
 - spatially inhomogeneous Cu-feature
 - chip gaps included
 - same CCD & RAWY position as for source region preferred
- new background region selection red: first choice background magenta: second choice background
- → one observation excluded: source too close to the Cu feature region (now 45 observations)

- so far: GTIs uniformly defined as those bins containing less than 130 (pn) or 40 (MOS) counts per bin
- a method to define GTIs individually for each observation wanted:
 - 1. lightcurves with > 10 keV (MOS) or 10-12 keV (pn) are prepared
 - 2. a histogramm is created and a gaussian applied: gaussian threshold set at three times the standard deviation above mean ($\mu + 3\sigma$)
 - 3. the maximum signal-to-noise ratio (snr) provides the snr threshold
 - 4. the more conservative one of the thresholds is chosen

- so far: GTIs uniformly defined as those bins containing less than 130 (pn) or 40 (MOS) counts per bin
- a method to define GTIs individually for each observation wanted:
 - 1. lightcurves with > 10 keV (MOS) or 10-12 keV (pn) are prepared
 - 2. a histogramm is created and a gaussian applied: gaussian threshold set at three times the standard deviation above mean ($\mu + 3\sigma$)
 - 3. the maximum signal-to-noise ratio (snr) provides the snr threshold
 - 4. the more conservative one of the thresholds is chosen

- so far: GTIs uniformly defined as those bins containing less than 130 (pn) or 40 (MOS) counts per bin
- a method to define GTIs individually for each observation wanted:
 - 1. lightcurves with > 10 keV (MOS) or 10-12 keV (pn) are prepared
 - 2. a histogramm is created and a gaussian applied: gaussian threshold set at three times the standard deviation above mean ($\mu + 3\sigma$)
 - 3. the maximum signal-to-noise ratio (snr) provides the snr threshold
 - 4. the more conservative one of the thresholds is chosen

recalibration with

- SAS v15.1
- the calibration files public in October 2016

3

- 45 of the original sources
- new background regions (source regions still 40")
- individual GTIs

Recalibration

3.3 First New Fit

- so far: maximum count rate (as in XMM-Newton Users Handbook v.2.10) given as a source selection criterium to limit pile-up
- more precise method: MOS diagonal events are produced almost exclusively from the pile-up of two single pixel events

 \rightarrow useful to estimate the pile-up level (fraction of diagonal events)

 obtained by dividing an image of diagonal events by an image of 'clean' #XMMEA_EM events (excluding e.g. events near hot pixels or outside of the field of view)

highly piled-up example: obs. 0134540601 MOS1 pile-up level > 16% (> 8 cts/s)

 maximum value within the central region taken as the pile-up level (but there is not always a clear center; the maximum value is not necessarily in the center) observation 0405690201: MOS1 pile-up level 2.47% (~0.32 cts/s)

- excluding piled-up sources (pile-up level > 1.5) would have led to an almost empty sample with only 5 (MOS1) / 4 (MOS2) observations left
- larger sample, and particularly a larger non-piled-up sample, needed for comparing subsamples with different pile-up levels (can be achieved by including large and small window mode data)

- **1 Introduction: CORRAREA**
- 2 Automation
- **3** Recalibration
 - 3.1 Background Regions
 - 3.2 Good-Time-Intervals
 - 3.3 First New Fit
 - 3.4 Pile-Up Check

4 Validation

- 4.1 Source Region Size
- 4.2 Nested Annuli
- 5 Outlook & Summary

- the residual ratios for source region radii of 30", 40" and 50" were compared with each other
- MOS1 shows a systematic worsening of residuals towards larger radii across the complete band; MOS2 shows something similar above ~4keV
- this should be an issue of the point spread function (PSF) wings

4 Validation

→ recalibrated, not yet public CCFs were tested with our tools to get an additional, independent validation

- **1 Introduction: CORRAREA**
- 2 Automation
- 3 Recalibration
 - 3.1 Background Regions
 - 3.2 Good-Time-Intervals
 - 3.3 First New Fit
 - 3.4 Pile-Up Check
- 4 Validation
 - 4.1 Source Region Size
 - 4.2 Nested Annuli
- 5 Outlook & Summary

- CORRAREA is intended to become a default empirical correction for the EPIC on-axis effective area in the future.
- The automation to get the residual ratio and the correction function is done to a large degree.
- The screening has been revised (GTIs, background, pile-up).
- We are close to releasing a new CORRAREA correction.
- Further recalibration and validation planned:

5

- increased source sample (new XMM Serendipitous Source Catalogue 3XMM-DR6, large and small window mode data, thick filter data, pn number of counts set to 13 500)
 - → up to 252 additional sources (currently subject to screening and further selection criteria)
- compare different subsamples
- cross calibration with instruments on other observatories
- Our tools can also be used to validate other calibration works.

Thank you!

References:

http://www.esa.int/

http://xmmssc-www.star.le.ac.uk/Catalogue/

https://heasarc.gsfc.nasa.gov/

Guainazzi et al., 2014, XMM-Newton CCF Release Note XMM-CAL-SRN0321

Read et al., 2014, Cross-calibration of the XMM-Newton EPIC pn and MOS on-axis effective areas using 2 XMM sources

XMM-Newton Users Handbook, v.2.14