Cal X-1: an in-orbit X-ray standard candle

M. Markevitch, K. Jahoda, M. Markevitch, J. Hill, T. Okajima, N. Shah (NASA GSFC),D. Bergeron (NIST), D. Schwartz, P. Plucinsky (SAO)

IACHEC meeting, March 29, 2017

• Poor absolute calibration of X-ray observatories is a limitation for several fundamental astrophysical measurements

Precision cosmology with galaxy clusters ...

... only as precise as our knowledge of cluster masses

X-ray calibration and cluster masses

• If derive cluster total mass M_{tot} from hydrostatic equilibrium assumption:

 $M_{\rm tot} \sim T_{\rm X}$

10% relative flux error at low / high energies $\rightarrow \sim 10\%$ mass error

 If use cluster gas mass M_{gas} as a proxy for M_{tot} (easier to measure, but has systematic uncertainties):

 $M_{\rm gas} \sim L_{\rm X}^{1/2}$

10% absolute soft flux error \rightarrow 5% mass error

Ratio of thermal spectra (APEC) with T = 5 keV and 5.5 keV:

(using Chandra ACIS-I spectral response)

• 10% relative flux error between $E \sim 1 \text{ keV}$ and $5 \text{ keV} \rightarrow 10\%$ error in T

Classic X-ray / SZ Hubble constant test

 from a ratio of SZ and X-ray cluster brightness, can derive distance to the galaxy cluster:

$$d_a \sim y^2 / f_X T^2$$

where y is SZ signal, f_x is X-ray flux and T is temperature (Silk & White 78)

- currently dominated by cluster non-sphericity and small cluster samples, but this error will be nailed by averaging over big *eROSITA* and SZ samples
- strongly dependent on X-ray (and SZ) calibration

Neutron star equation of state

- from radii and masses of neutron stars, can derive equation of state of ultra-dense matter, inaccessible in the lab
- radius comes from X-ray flux and distance (Ozel 15)
- need ~ 2% flux accuracy to distinguish between interesting eqs. of state

Current state of Chandra and XMM calibration

Temperatures for the same clusters from different instruments:

Schellenberger 15

- >10% discrepancy in cluster *T* between *Chandra* and *XMM*
- impossible to know which instrument (if any) is correct

need ~ 1% X-ray flux calibration accuracy;
can't achieve this level by ground calibration

solution: an X-ray standard candle in orbit

APRA proposal submitted in March 2017 (PI K. Jahoda)

- telescope sat: *d*=10 cm, *f*=1.5 m mirror (requires extendible / coilable boom)
- source sat: ⁵⁵Fe source embedded in AI to produce lines at 6 keV and 1.5 keV

Cal X-1: how to calibrate X-ray Observatories

• By staggering celestial source and radioactive source observations, we cancel out calibration of *Cal X-1*

Requirements (given the CubeSat form factor)

- mirror design that minimizes vignetting ($r \sim 1'$ vignetting-free spot)
- distance L between telescope and source sats: 0.7–1.5 km for the source to be a "point source" (~20") but still bright enough
- *knowledge* of distance to < 1% in L^2 : < 5m for L=1 km
- radioactive source: ~ 2 Curie of ⁵⁵Fe to give sufficient flux
- telescope sat orientation: < 0.5' to keep mirror vignetting under 1%
- source sat orientation: $< 3^{\circ}$ to keep projected source size within 1%
- Formation flying: maintain R ~ 1 km for ~ 6 months of operation (at ISS orbit, requires orbit corrections with thrusters)

Implementation

- Two CubeSats: Blue Canyon bus, come with attitude control system (2 star trackers, reaction wheels)
- Source Sat has cold-gas thruster come OTS in CubeSat form factor
- Tel Sat has additional camera (OTS) to track LED on Source Sat
- Extendible boom: Orbital ATK makes them (scaling down by ×2 needed); pack into 1% of unfolded size; stability requirements not a problem
- Mirror: Goddard, similar to Astro-H, NICER;
 PSF with 1' HPD, 4' 90% radius
- Detector: CCD made by XCAM, 22μ m pixels, $19' \times 13'$ FOV
- Radioactive source: in collab. with Eckert & Ziegler, calibrated at NIST

Navigation: observing source satellite

(Expected accuracy shown)

Navigation: observing celestial source

(while source sat is charging and firing thruster to correct the orbit)

X-ray mirror: vignetting-free spot

Vignetting <1% within r = 1'

Shorter first stage

Effective area: 18 cm² at 1.5 keV, 14 cm² at 6 keV (includes CCD QE)

Radioactive source

- ⁵⁵Fe particles (2–3 μ m) embedded in Al film
- In best-case source geometry, number of 1.5 keV photons only 0.9% of 5.9 keV photons (Al fluorescent yield only 3.6%)
- NIST: absolute 1% calibration of source at 5.9 keV possible; at 1.5 keV needs development (but have several ideas)
- Given the small mirror, Cal X-1 statistics will be limited by low brightness of radioactive source at 1.5 keV, low flux of celestial sources at 6 keV

Celestial sources

• Nominal source to get an idea of exposures: 3C273 (mid-range state):

125 ks to get 10^4 cts in 0.5 keV interval around E=1.5 keV 700 ks to get 10^4 cts in 1 keV interval around E=5.9 keV

- Variable sources need to be observed simultaneously with big Observatories
- Even 3C273 piles up *Chandra* and *XMM* in imaging modes
- At 6 keV:

observe a brighter source with *NuSTAR*, *XARM* (or with *Chandra*, *XMM* gratings), then rely on cross-cal. with *Chandra* and *XMM* imaging detectors?

• At 1.5 keV:

observe a compact extended, constant source — e.g., N132D? (Faint, but no need to observe simultaneously; *Cal X-1* can afford to spend 1 Ms)

	Flux uncertainty (1 σ)	
	1.5 keV	6 keV
Science Requirement		
Delivered accuracy of celestial source flux	2.0%	2.0%
Expected Error Budget ($L = 1 \text{ km}$)		
Systematic uncertainties:		
Calibration source:		
Distance L (from GPS)2 m	0.4%	0.4%
Absolute source calibration	1.0%	1.0%
Source sat orientation0.1°	0.1%	0.1%
Vignetting (off-axis angle) contributions:		
Finite source size		
Finite mirror size9"		
FAS pointing accuracy7"		
Boom tilt stability		
Total angle uncertainty	0.4%	0.4%
Total cal. source systematic	1.2%	1.2%

	Flux uncertainty (1 σ)	
	1.5 keV	6 keV
Science Requirement		
Delivered accuracy of celestial source flux	2.0%	2.0%
Systematic uncertainties (continu	ued):	
Celestial source:		
Vignetting contributions:		
ACS pointing accuracy		
Boom tilt stability		
Total angle uncertainty	0.5%	0.5%
Statistical uncertainties:		
Calibration source, 500 ks	1.0%	0.1%
Celestial source: 3C273, 700 ks	0.4%	1.0%
Systematic + statistical:		
Calibration source	1.5%	1.2%
Celestial source	0.65%	1.1%
Delivered accuracy (celestial + cal. source)	1.7%	1.6%

 APRA proposal submitted in March 2017: under \$10M, build and launch late 2020 – early 2021

(hopefully while Chandra and XMM still operating)

Crazy idea: what if ...

• XARM has 25× greater effective area — can observe a set of fainter, constant sources like N132D, establish standard candles in the sky

If Cal X-1 concept proves successful ...

future observatories may fly their own source satellites