

Status of the Concordance Project

Herman L. Marshall

Yang Chen, Xiao-Li Meng, Xufei Wang, David van Dyk,Vinay Kashyap, Paul Plucinsky, Matteo Guainazzi

# The Goal

- The problem: in-flight data show discrepancies
  - Cluster temperatures and fluxes
  - Blazar fluxes from simultaneous observations
  - SNR line fluxes
  - No absolute calibrators across all bands
- Missions characterize systematic uncertainties internally and independently
- Assuming we should, how does IACHEC change a mission's calibration?
- Specifically: derive EAs changes for optimal agreement

#### Concordance Overview

- Shrinkage method (Meng, 2015 IACHEC)
  - Start with  $C_{ij}$  = Counts for instrument i (1..N), source j (1..M)
  - Assume "true" areas  $A_i$ , "true" fluxes  $F_j$ ,  $\sigma_{ij} = st$ . dev. in  $In(C_{ij})$
  - Estimate  $F_j$  by  $f_j = C_{ij} / a_i$  ( $a_i = prior estimate of A_i$ )
  - Method determines "best"  $\underline{F}_j$  and "better" EAs  $\underline{a}_i = a_i^w (C_{ij}/\underline{F}_j)^{I-w}$ 
    - w =  $I/(I + M\tau^2/\sigma_{ij}^2)$ ,  $\tau$  = "a priori" st.dev. in In(a)
    - w = 0 means data dominate, drive change in EA
    - w = I means data are mediocre, EA isn't changed
    - brings  $\underline{f}_j = C_{ij} / \underline{a}_i$  closer to but not precisely to  $\underline{F}_j$
- IACHEC team sets  $\tau$ , runs shrinkage analysis
  - IACHEC team recommends changes from  $a_i$  to  $\underline{a}_i$
  - Process runs for each of many bandpasses "independently"

## Concordance Actions & Plan

#### • Done:

- Nail down the math
- Simulate & analyze sample data sets
- Supply "real", trial data sets (IE0102, 2XMM, XMM blazars)
- Apply method to trial data, test goodness of fits
- Plan:
  - Publish method (Chen+ '17, JASA)
  - Publish trial results (Marshall+'17,AJ)
  - Add more IACHEC cross-cal results, present at IACHEC # 12
  - Add complexity
    - use smoothness from global models
    - consider handling of RMF uncertainties
    - compare to MCCAL, pyBLoCXS (with J. Drake)

#### Concordance I: IE0102



## Concordance 2:2XMM

- Data from Matteo Guainazzi
- Based on 42 sources from the 2XMM catalog
- Unaffected by pileup; no EA change required



Cross-Cal Concordance 3/28/17

## Concordance 3: XMM Blazars

- 117 bright XMM sources from Matteo Guainazzi
- PSF clipped to reduce effect of pileup
- Result: 5% adjustment to pn indicated, I-2% for MOS



Cross-Cal Concordance 3/28/17

#### Data Validation

- Goal: find outliers in XMM blazar set
- Sources 49-54 (EXO 0748-676): MOS2 too high
- Source 62, 83 (H2356-309,3C III): MOSI too low

Hard Band (tau= 0.025 known variances)



## Concordance 4: Capella

- Lines from Chandra grating spectra
  - Ne x, Fe xxvii (15 Å), Fe xxvii (17 Å), O viii
- 5 sets of adjacent observations compared
- Not all instruments used each time



## Concordance Plan

- Publish method (Chen+ '17, JASA)
  - Outlier handling with t-distribution
  - Poisson distribution for fainter samples
- Publish trial results (Marshall+'17,AJ)
  - Oriented to astronomers
  - Add Capella emission lines observed with Chandra
- Add more IACHEC cross-cal results (See WG and Roundtable)
- Add features
  - Use smoothness from global source models
  - Use covariances from EA models
  - Consider handling of RMF uncertainties
- Work with MCCAL, pyBLoCXS (Drake et al.)
- Complete the instrument-energy matrix

#### The Matrix

|         | Chandra Chandra<br>ACIS HETGS | XMM<br>pn | XMM<br>MOS1 | XMM<br>MOS2 | Swift<br>WT | Suzaku<br>XIS0 |
|---------|-------------------------------|-----------|-------------|-------------|-------------|----------------|
| .1533   |                               |           |             |             |             |                |
| .3354   |                               |           |             |             |             |                |
| .548    | 0.05                          |           |             |             |             |                |
| .8-1.2  | 0.03                          |           |             |             |             |                |
| 1.2-1.8 | 0.03                          |           |             |             |             |                |
| 1.8-2.2 | 0.03                          |           |             |             |             |                |
| 2.2-3.5 | 0.03                          |           |             |             |             |                |
| 3.5-5.5 | 0.03                          |           |             |             |             |                |
| 5.5-10  | 0.05                          |           |             |             |             |                |

#### The Future...

