

Micropore optics; application, modelling and calibration

Charly Feldman, Jim Pearson, Dick Willingale Steve Sembay

Department of Physics and Astronomy, University of Leicester, UK

Willingale, R. et al. "Aberrations in square pore micro-channel optics used for x-ray lobster eye telescopes", *Proc. SPIE* 9905, Space Telescopes and Instrumentation, 2016

See also

Kuntz, K. et al. "INITIAL TESTS OF SLUMPED MICROPORE OPTICS FOR WIDE-FIELD X-RAY ASTRONOMY", in prep.

Micropore Optics:

<u>Lobster eye optics – Angel 1979</u>

Square pore micro-channel plates

- Glass plate full of holes!
 - Thickness 0.9-2.3 mm
 - Transmission ~67%
- Square Pores L~1 mm, d~20 μ m or ~40 μ m, wall ~4 μ m ~12 μ m, L/d~50

Cartesian packed pores for Lobster Eye

MPO Missions/Instruments

Mission	Туре	Instrument	Lead	Status
DXL/STORM	Sounding Rocket	STORM	NASA/GSFC, USA	2 flights, 2012, 2016
BepiColombo	ESA Cornerstone	MIXS	Leicester University, UK	Launch 2018
CUPID	Cubesat	CUPID	Boston University, USA	Launch 2019
SMILE	ESA/CAS S2	SXI	Leicester University, UK	Launch 2021
SVOM	French/CAS	MXT	CNES	Launch 2021
Einstein Probe	CAS	WFI	CAS	Probably selected
Theseus	ESA M5	WFI	Leicester University, UK	Proposed
ΤΑΟ	NASA MIDEX	WFI	NASA/GSFC, USA	Proposal
STORM	NASA MIDEX	?	NASA/GSFC, USA	Proposal

Micropore optics development by Photonis, Cosine Research BV, ESA and the University of Leicester, UK

Additional processes offered by Photonis: Metal coating of pores (Iridium) Deposition of Aluminium film (filter) on MPO surface

Model point spread function

Intrinsic Aberrations

Contributions to central core angular resolution

Туре	Relation	F = 300 mm d = 27 µm L = 1.35 mm	F = 1000 mm d = 50 µm L = 2.5 mm
Spherical	$\Delta \theta_{\rm s} = 4\sqrt{2} ({\rm d}/{\rm L})^3$	~9"	~9"
Geometric	$\Delta \theta_{g} = d/F$	~19"	~10"
Diffraction	$\Delta \theta_{\rm d} = 2\lambda/d$ (Energy = 1 keV)	~19"	~10"
	$\Delta \theta_{\rm i} = (\Delta \theta_{\rm s}^2 + \Delta \theta_{\rm g}^2 + \Delta \theta_{\rm d}^2)^{1/2}$	~28″	~17″

Best possible

Optimum (for point source detection) L/d ~ 50 Highest angular resolution occurs for $\Delta \theta_g = \Delta \theta_d$

Intrinsic Slumping Errors

Tilt angle, $\theta_a \sim r^2 / (2R^2)$

Tilt error, $\Delta \theta_a \sim (r / R)^2$

Shear angle, $\theta_h \sim r \sin(2\theta)/R$

Shear error, $\Delta \theta_h \simeq 2 \sin(2\theta)(d/L)(r/R)$

F mm	Δθ _i	Δθ _a	Δθ _h	Δθ _t
1000	0'.28	0'.17	0'.60	0'.68
300	0'.48	1'.88	1'.99	2'.78

1) Multifibre structure

Regular array of packed multi-fibres 25x25 for 40 μm pores 35x35 for 20 μm pores Shear distortion at corners - removes flux from the cross-arms Shear error amplitude modeled as a Gaussian

 $\theta_{\rm h}$ = A exp(-r²_f / 2 $\sigma^2_{\rm f}$); $\sigma_{\rm f}$ ~ 4d; A ~ 4 degrees

R_f is radial distance of pore from corner of multibre

1) Multifibre structure

Data at 1.49 keV. Single plate illuminated at an angle

In addition to shear and tilt errors there will be pore wall figure errors: Modelled as two populations of pores; Inner 25:25 & Outer 5 pore band (50:50 split) Outer band has rms figure error ~4 times Inner population.

Type 1) Introduced when plates are cut from a block. Not serious as long as multiple plates In a frame are mounted with same relative bias angle

Type 2) Variation across a plate due to slumping (or mounting) process. Potentially more serious.

<u>Contributions to FWHM for</u> SVOM breadboard plate

	arc mins	
geometric pore size $d = 20 \ \mu m$	0.07 🔵	
spherical aberration pore $L/d = 50$	0.15	
slumping - intrinsic radial tilt errors	0.17	Combine*
slumping - intrinsic shear errors	0.60	to give obcorved
surface roughness 11 Å rms, $\omega_b = 10 \text{ mm}^{-1}$	2.46	
figure errors at centre of multifibres	2.48	FWHM ~ 6'.5
shear errors at centre of multifibres	-	*Not rmc cum
multifibre tilt errors along primary axes	3.54	NOUTINS SUM
figure errors at edge of multifibres	9.92	
shear errors at edge of multifibres	- [
global shear errors	-	
global tilt errors	-	

Compare with instrinsic + slumping errors which predict ultimate angular resolution in range 1 - 3 arcminutes depending on focal length

SVOM Breadboard Model

X-ray Testing

Mass of frame plus 21 MPOs ~1 kg Leicester TTF – source at 27 m MPE Panter – source at 128 m

Al support frame – array of 21 MPOs 40x40mm² spherical surface R=2000mm – F=1000mm Machining accuracy ±10μm 2x 20μm MPOs, 2x 40μm MPOs, 1x 20μm Ir coated MPOs, 2x40μm Ir coated MPOs

Data versus Simulation

X-ray image and simulation at 1.49 keV

mm

Efficiency Measurements

MPO	X-ray R (mm)	Thickness (mm)	Double reflection efficiency	Best FWHM (arcmin)
YC001-A6	1874	1.05	0.87	6.46
YC001-D1	1970	1.20	0.90	6.39
YC001-D5	1906	1.20	0.92	7.52
YC001-C3	1906	1.70	0.97	7.55
YC001-C4	1906	1.70	0.95	7.15

Single reflection efficiency in range 0.93 – 0.98

MPO Calibration

Thankyou