# Hitomi SXS in-flight calibration with Crab

NASA, ESA and Allison Loll/Jeff Hester (Arizona State University). Acknowledgement: Davide De Martin (ESA/Hubble)



M. Tsujimoto, T. Okajima on behalf of SXS team



#### 1. Validate SXS calibration with Crab.

#### 2. Add SXS to IACHEC Crab cross-cal results.



p.2/16



## 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Crab as a standard candle

- Definition of  $X/\gamma$ -ray flux (in the unit of "Crab").
- Merits:
  - Spectrum is nearly stable, simple, and flat.
  - Built-in clock.
  - Frequently observed. Wealth of data.
- Complexities:
  - Bright. Some flux variability.
  - Extended (pulsar + nebula).
  - Spectral dependence on phase & position.



1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion What SXS can & cannot offer

- Merits:
  - Non-dispersive.
  - Sharp LSF. Very low NXB (< 1 /5eV/100ks).</p>
  - Only one observation mode.
  - <80µs timing resolution to resolve phase.
  - Wide bandpass: 0.1-20 keV.
  - Comparison with SXI: CCD w. same telescope.

116

- Demerits:
  - Coarse spatial resolution.  $\Delta\theta \sim 1.2$  arcmin.

2017#0 Data w. gate valve: Sensitivity < 2 keV lost.



### 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion **Observation**

- 2016/3/25
- t<sub>exp</sub> = 9.7 ks
- E > 2 keV &
  Fx~0.13 "Crab"
  w. GV.
- 1.8M events.



**IACHEC 2017** 



## 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Data sets (1) Image & Pulse

| (a)         | P23  | P24         | P26         | P34        | P32        | P30        |
|-------------|------|-------------|-------------|------------|------------|------------|
|             | 2.03 | 3.69        | 4.52        | 3.23       | 2.25       | 1.29       |
|             | P21  | P22         | P25         | P33        | P31        | P29        |
|             | 3.87 | 10.70       | 16.01       | 16.44      | 8.00       | 2.83       |
| acB         | P19  | P20         | P18         | P35        | P28        | P27        |
| 0.17        | 5.78 | 18.73       | 37.35       | 34.39      | 13.69      | 35.60      |
| acA         | P9   | P10         | P17         | P0         | P2         | P1         |
| 0.20        | 4.75 | 21.32       | 35.60       | 27.49      | 11.47      | 4.20       |
|             | P11  | P13         | P15         | P7         | P4         | P3         |
|             | 3.90 | 11.98       | 15.62       | 10.73      | 5.97       | 2.32       |
|             |      | P14<br>3.57 | P16<br>3.98 | P8<br>3.60 | P6<br>2.22 | P5<br>1.02 |
| P12<br>5.98 |      |             |             |            |            |            |



Event candidate rate by FPGA. 36 independent spectrometers. Contrast by x40. "Raw" folded light curve. (No correction needed.)



## 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion Data sets (2) Spectrum





### 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion (1) Pile-up





# 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion (2) CPU dead time

#### Event candidate rate by FPGA

Live time fraction

#### Event processed Rate by CPU

| P23<br>2.03 | P24          | P26<br>4.52  | P34<br>3.23  | P32          | P30<br>1.29  | P23<br>1.00 | P24<br>1.00 | P26<br>1.00 | P34<br>1.00 | P32<br>1.00 | P30<br>1.00 | P23<br>1.41 | P24<br>2.60 | P26<br>2.79 | P34<br>2.21  | P32<br>1.56 | P30<br>0.96 |
|-------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|
| P21<br>3.87 | P22<br>10.70 | P25<br>16.01 | P33<br>16.44 | P31<br>8.00  | P29<br>2.83  | P21<br>1.00 | P22<br>0.94 | P25<br>0.72 | P33<br>0.98 | P31<br>1.00 | P29<br>1.00 | P21<br>2.74 | P22<br>7.80 | P25<br>9.22 | P33<br>11.30 | P31<br>5.58 | P29<br>1.93 |
| P19<br>5.78 | P20<br>18.73 | P18<br>37.35 | P35<br>34.39 | P28<br>13.69 | P27<br>35.60 | P19<br>0.99 | P20<br>0.61 | P18<br>0.27 | P35<br>0.66 | P28<br>1.00 | P27<br>0.37 | P19<br>3.85 | P20<br>9.21 | P18<br>8.67 | P35<br>17.45 | P28<br>9.80 | P27<br>9.61 |
| P9<br>4.75  | P10<br>21.32 | P17<br>35.60 | P0<br>27.49  | P2<br>11.47  | P1<br>4.20   | P9<br>0.98  | P10<br>0.62 | P17<br>0.37 | P0<br>0.89  | P2<br>1.00  | P1<br>1.00  | P9<br>3.32  | P10<br>9.87 | P17<br>9.61 | P0<br>17.02  | P2<br>8.13  | P1<br>2.83  |
| P11<br>3.90 | P13<br>11.98 | P15<br>15.62 | P7<br>10.73  | P4<br>5.97   | P3<br>2.32   | P11<br>0.99 | P13<br>0.99 | P15<br>0.92 | P7<br>1.00  | P4<br>1.00  | P3<br>1.00  | P11<br>2.71 | P13<br>8.35 | P15<br>9.95 | P7<br>7.75   | P4<br>4.14  | P3<br>1.59  |
|             | P14<br>3.57  | P16<br>3.98  | P8<br>3.60   | 2.22         | P5<br>1.02   |             | P14<br>1.00 | P16<br>1.00 | P8<br>1.00  | P6<br>1.00  | P5<br>1.00  |             | P14<br>2.43 | P16<br>2.71 | P8<br>2.41   | P6<br>1.51  | P5<br>0.71  |

- Duration of dead time ~ buffer size ~ 2-20 sec.
- Correction made for ARF.
  IACHEC 2017



## 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion (1) Overall fitting





## 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion (2) Comparison W. IACHEC



XMM-pn XMM-M2 Integral Swift XRT Chandra RXTE EXOSAT SXS

2017/03/28

--- ASCA ---- BeppoSAX-- Ginga --- MIR --- Einstein --- ROSAT

p.11/16



### 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion (3) Phase dependence



p.12/16

# 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion (4) Systematic uncertainties

(Preliminary) uncertainties in Norm.

| Range<br>(keV) | 2-4     | 4-8                | 8-16   | 2-20    |      |
|----------------|---------|--------------------|--------|---------|------|
| Mirrors        | 2%      | 7%                 | 2%     | 7%      |      |
| GV             | <1.4%   | <0.4%              | <0.4%  | <1.4%   |      |
| Filters        | ~1%     | ~1%                | ~1%    | ~1%     |      |
| De QE          | <0.1%   | <0.4%              | <0.8%  | <1%     |      |
| Dead time      | <0.2%   | <0.2%              | <0.2%  | <0.2%   |      |
| NXB            | <0.003% | <0.004%            | <0.03% | <0.007% |      |
| Crab           | ?       | ?                  | ?      | ?       |      |
| 2017/03/28     |         | <b>IACHEC 2017</b> |        | p.13    | ;/16 |



### 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion **Conclusion**

- Goals:
  - (a) To validate SXS calibration.
  - (b) To compare with the IACHEC result.
- Results:
  - Norm, Gamma within IACHEC ranges.
  - Gamma softer than others.
  - Residuals outside of 2-8 keV range.
- See also
  - All the other SXS results (Session V)
  - S. Koyama for timing (Session VII)
  - T. Sato for SXT (Sessoin VIII)

# BACKUP

**IACHEC 2017** 



# 1. Intro 2. Obs 3. Analysis 4. Discussion 5. Conclusion (1) S/C pointing

#### Average position of events



<sup>2017/03/28</sup> 

**IACHEC 2017**