Swift-XRT Calibration Update

Andy Beardmore on behalf of *Swift*-XRT Team

University of Leicester

Avigliano Umbro, 2018-Apr-10

XRT Calibration

Gain/CTI:

- Measured from Fe-55 corner source data (plotted at -60C)
 - NOM all columns in CS
 - NO_TRAP the best 5, trap free, columns
- Gain file is also CCD temperature dependent – CALDB parameters stored at 3 temperatures (-70C, -60C, -50C) and interpolated.

- After \sim 3 years, CTI became more and more dominated by the formation of deep charge traps in individual pixels
- Traps mapped yearly using Si-K α line in Tycho & Cas A SNRs.

PC Mode - Tycho (15 x 20ks)

WT Mode - Cas A (6 x 10ks)

Trap Mapping - WT Mode

5/23

- Cas A trap mapping observations taken in 2018-Jan.
 - Current CALDB ~ 1 year old 'middle' shows average 50 eV offsets at Si-Kα (PI=186) → due to gain/trap evolution.

Existing trap offsets zeroed out and new ones derived
Deepest traps ~ 600 eV

UNIVERSITY LEICEST

Existing trap offsets zeroed out and new ones derived
Trap corrections ~ 120 - 650 eV at Si-Kα

apb (UoL)

UNIVERSITY OF LEICESTER

Trap depths from 2016-12 and 2018-01 compared
Trap corrections ~ 120 - 650 eV at Si-Kα

LEICEST

- New gain file with updated trap depths
 - $\bullet\,$ Spectral variations across the SNR limit accuracy to $\pm 10-15\,eV$

• New gain file with updated trap depths

• Spectral variations across the SNR limit accuracy to $\pm 10-15\,\text{eV}$

apb (UoL)

10/23

- In the spirit of IACHEC
 - MOS1 small window spectrum
 - model tbabs * (3 brems + 15 gaus)

Cas A (2007-07-25) - MOS1 (P0-12)

• Trap depth energy dependence - broken powerlaw :

•
$$E_T = D_{ref} \left(\frac{E}{E_{ref}}\right)^{\alpha}$$

• Shift E_{ref} , D_{ref} from 1.86 \rightarrow 3 keV, $\alpha_1 = 0.85$, $\alpha_2 = 0.55$

apb (UoL)

- Energy dependence at low E proved problematic as E0102 shows large (~ 30 eV) offsets → symptomatic of bright Earth.
- Requested 5ks N132D TOO on Mar-30, clobbered by GRBs on Apr-04, repeated on Apr-06.
- Shows low E $\alpha_1 = 0.85$

- XRT uses JET-X (spare) mirrors : HEW 18 ± 2 arcsec (at 0.5-4.0 keV); flat across central 7 arcmins.
- CCD22 pixel scale 2.357 arcsec
- PSF calibrated pre-launch at Panter
 - Parameterised as King (wing + core) + Gaussian (core)
- Initial post-launch in-orbit tests Gaussian term dropped
 - King params : $r_c = 5.5$ arcsec, $\beta = 1.526$ (on-axis at 1.5 keV)
- PC mode PSF measurements not easy
 - Pile-up above \sim 0.5 count/s distorts PSF
 - Swift snapshots $\sim 1 2$ ks long; star-tracker accuracy 3.5 arcsec; s/c attitude drifts after long slews.
 - Dust scattering halos sometimes seen around even moderately absorbed sources broaded PSF
- Evidence that PSF wings (beyond \sim 50 pixels radius) are underestimated

Two approaches :

- PC Simultaneously fit the same 2D profile to multiple images containing a given source (in SKY coords). Note: PC background is low (~ 10⁻⁶ count/s/pixel). (Phil Evans)
- WT Fit short durations of data (in DET coords), stack, refit
 - WT is a 1D readout \rightarrow use the 2D PSF model then collapse it down (over 600 pixels) in the DETY dimension
 - Fit for DETX centroid position. Predict DETY (for the 2D model) from s/c attitude, telescope/CCD alignment (*pointxform* FTOOL)
 - Randomise events over pixel width during shift-n-stacking.
 - Background level can be tricky as WT background has been increasing with time (0.001 – 0.005 count/s/column; see Trailing Charge talk last year).

- RXJ1856 grade 0 data.
- Fit with CALDB PSF parameters

Ratio show evidence for Gaussian component & extended wings

- However, RXJ1856 is a soft source. Repeat on other sources
 - 'good' (unbsorbed, not piled-up) sources are difficult to find.

apb (UoL)

WT PSF

- Her X-1 (2012-2017) unabsorbed, minimal halo
- Fit with CALDB PSF parameters.

- Her X-1 (2012-2017)
- King parameters allowed to vary

- Her X-1 also observed in PC mode when bright (~ 40 c/s)
- Pile up causes good events (grade 0–12) to migrate to bad events (grade 13–31) leaving a hole in the PSF

• PSF modification function to account for pile up :

$$PSF_{\rho u}(r) = m(r) \times PSF(r)$$

where $m(r) = s + A\left(\frac{r}{l}\right)^{\alpha}$ for $0 \le r < l$
 $= 1 - B \exp\left(-\frac{(r-l)}{\tau}\right)$ $r \ge l$

with $A = l(1 - s)/(l + \alpha \tau)$, B = 1 - s - A. Free parameters : s, l, τ, α

- Her X-1 PC at 40 count/s
- King + pile up parameters allowed to vary

- r_c , β consistent with WT estimate.
- Get pile up corrected rates for free (with correct errors !)

Piled-up PC PSF

Phil Evans implementing the new PU-PSF model into the 2SXPS catalogue reprocessing.

- Example WT PSF profiles from a low column density source (MAXIJ1820+70), with no/minimal halo, and a heavily absorbed source (SwiftJ16582-4242), with a visible halo.
- XRTMKARF correction will be underestimated (const factor > 1) for a source with a scattering halo.

MAXIJ1820+70

apb (UoL)

- New WT mode gain file ready for release anytime.
- PC mode gain file will follow shortly.
- Investigate use of trap DETY positions derived from PC for WT.
- Looks like new WT RMF is needed (broader response).
- PSF model improvements are under investigation.
- No cats were harmed in the making of this production !

