

INTEGRATED ACTIVITIES FOR THE HIGH-ENERGY ASTROPHYSICS DOMAIN

Clusters of galaxies WG session

13th IACHEC meeting, 2018, Italy

INTEGRATED ACTIVITIES FOR THE HIGH-ENERGY ASTROPHYSICS DOMAIN

Program

- 1) Erosita cross-calibration with clusters
- 2) Multi-mission review from last year
- 3) Updates on the Multi-Mission Study

1) Erosita cross-calibration with clusters

- Clusters for cross-calibration only and not a high priority
- A1795 and A2029 are in the calibration program
- GO time may yield nearby clusters (with a single pointing far beyond the virial radius)

INTEGRATED ACTIVITIES FOR THE HIGH-ENERGY ASTROPHYSICS DOMAIN

Funded by the Horizon 2020 Framework Programme of the European Union

2) Multi-mission review from last year

TASK 1: Define the extraction radius

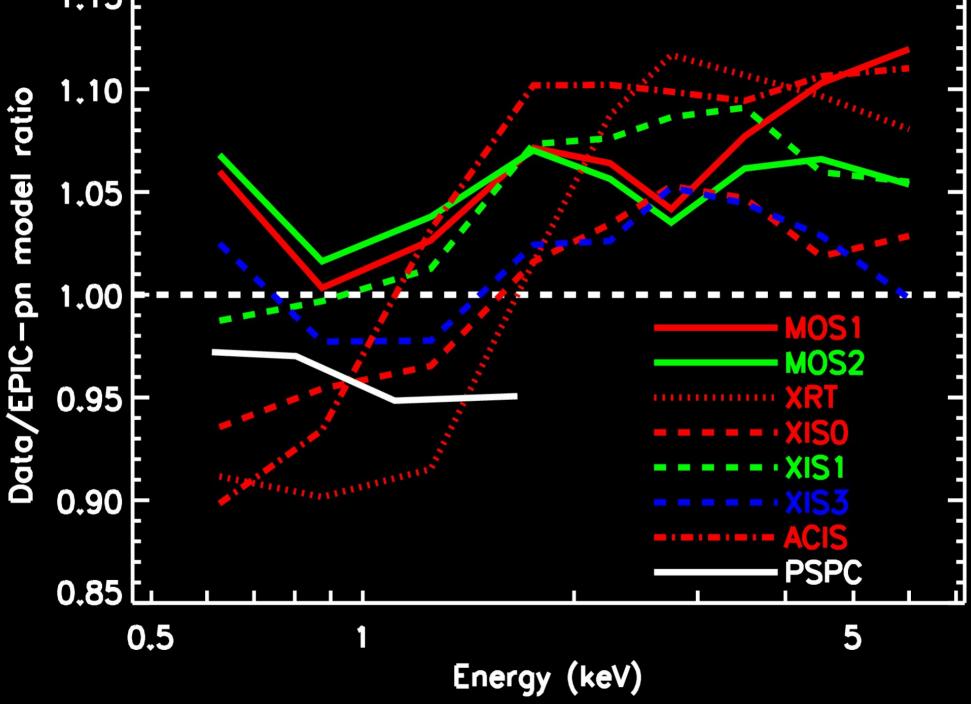
- Statistics requirement and PSF minimisation prefer bigger values
- bkg and vignetting minimisation prefer smaller values

Extraction radius = 6 arcmin

TASK 2: Define a suitable cluster

- Hot enough (minimise 1 keV line emission, better src/to bkg at 7 keV energies)
- Not too distant to yield enough photons
- Preferably low NH... if high, harder to get enough photons at the lowest energies. But we can cut the low energy band and use the rest. No requirement for NH at the moment

TASK 3: Define a suitable observation


- * Long enough for statistics.
- * Cluster center FOV center offaxis minimised
- * Proceed with single on-axis observations. If too constraining (not enough clusters with enough counts) we will discuss about merging several observations.
- 1000000 c in central 6 arcmin
 (400000 for PSPC)
- Offaxis < 3 arcmin

Stack residuals spectra

Sample of 4 clusters

$$R_{i/ref} = \frac{data_i}{model_{ref} \otimes resp_i} \times \frac{model_{ref} \otimes resp_{ref}}{data_{ref}}$$

INSTRUMENT AVERAGES 1,15 1,10 1.05 1.00 MOS2 0.95XRT ----XISO - · XIS1 0.90 ----- ACIS

More clusters

- This needs to be done carefully with the definitions we agreed on today
- ★ Task 4: Compile a list of available clusters and obs. ID:s <u>fulfilling our criteria</u>: Larry (Chandra), Eric (Suzaku), Andy B. (Swift), Steven Snowden (ROSAT), Jukka (XMM) Deadline end of April
- * Task 5: Extract and process data with May 2017 calibration information. Deadline end of June
- * Task 6: Jukka will do the stack residuals ratio analysis.

3) Updates on the Multi-Mission Study

Extraction radius

- In order to optimise the data, we experimented with r_ext = 3,4,5 and 6 arcmin
- Today only 6 arcmin results
- · And only for EPIC-pn / ROSAT-PSPC pair

Counts criterium

- Same epoch observations co-added (PSPC only)
- Had to lower the count criteria to get enough clusters:
- 10000 c in central 6 arcmin in the 4 PSPC channels 0.5-0.7-0.9-1.3-2.0 keV
- Statistical uncertainties ≈ 2% per channel

AHFAD

Updates from last year

- More clusters...
- Here only pn PSPC
- r extr = 6 arcmin only
- NH free, abund equiv 0.3 Solar
- Unnormalised blank sky

INTEGRATED ACTIVITIES FOR THE HIGH-ENERGY ASTROPHYSICS DOMAIN

- 12 clusters observed with XMM-Newton/EPIC-pn and ROSAT/PSPC having
 - bkg < 10% of the source in the 0.5-2.0 keV band
 - Number of counts > 10^4 in the 0.5-2.0 keV band
- Possibly 14 additional clusters (TBD)

ROSAT PSPC:

Bkg always < 10%

Not always data available

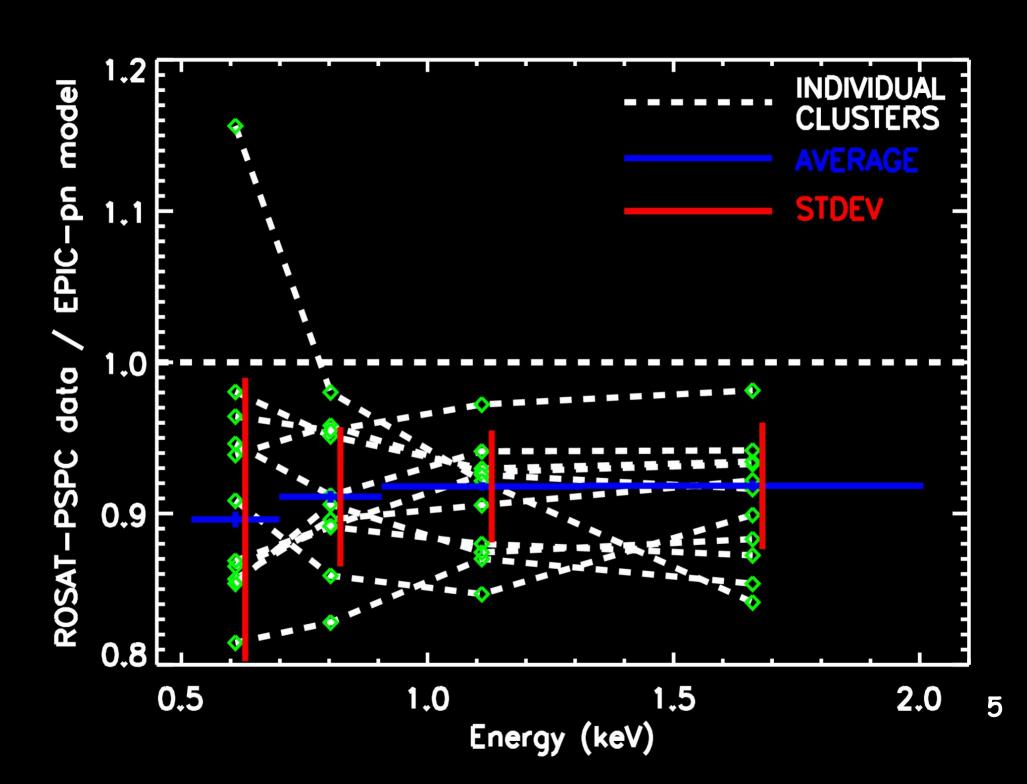
pc: min. 10⁴ pn 0.5-2.0 keV band counts?

pb: pn bkg/src < 10%?

Rd: ROSAT data exists?

Rc: min. 10⁴ ROSAT 0.5-2.0 keV band counts?

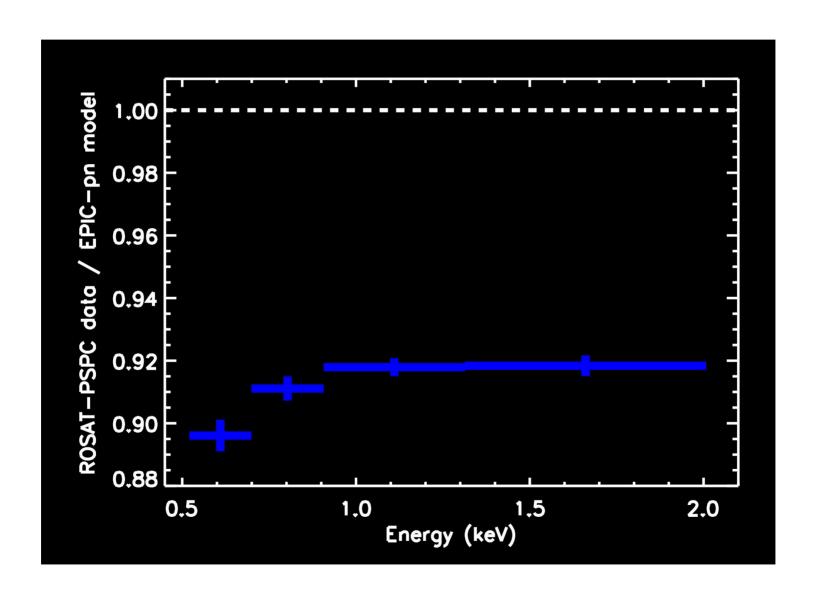
cluster	рс	pb	Rd	Rc
A85	\odot	\odot	\odot	\odot
A119	<u>=</u>	<u>=</u>	\odot	<u>:</u>
A399	<u>=</u>	<u>=</u>	\odot	<u>:</u>
A401	\odot	\odot	\odot	\odot
A478	\odot	\odot	\odot	\odot
A754	©	\odot		
A644	☺	\odot	☺	\odot
A1413	\odot	<u>=</u>	\odot	<u>:</u>
A1650	\odot	<u>:</u>		
A1651	©	©	©	\odot
Coma	\odot	\odot	\odot	\odot
A1689	<u>=</u>	<u>:</u>	<u>=</u>	<u>=</u>
A1795	\odot	\odot	\odot	\odot
A1914	<u>=</u>	<u>=</u>	<u>=</u>	<u>:</u>
A2029	\odot	\odot	\odot	\odot
A2065				
A2142	\odot	\odot	\odot	\odot
A2163				
A2204	©	\odot	☺	<u> </u>

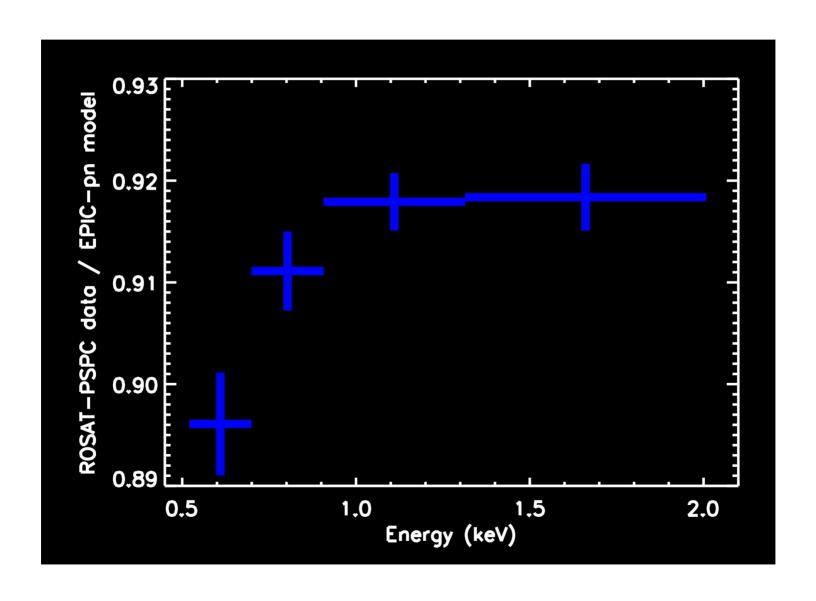

cluster	рс	pb	Rd	Rc
A2244	\odot	<u>=</u>	\odot	<u>=</u>
A2255	\odot	<u>=</u>	<u>=</u>	<u>=</u>
A2256	<u>:</u>	<u>=</u>	<u>:</u>	<u>:</u>
A2319	\odot			☺
A3112	\odot	\odot	\odot	\odot
A3158	☺	\odot		
A3266	off			
A3391	\odot	\odot	\odot	<u>:</u>
A3558	\odot	\odot	\odot	\odot
A3571	\odot	\odot	\odot	<u>=</u>
A3627	?	?	<u>:</u>	<u>:</u>
A3667	off			
A3827	\odot	<u>:</u>	<u>:</u>	
A3888	\odot	\odot	\odot	<u>:</u>
Ophiu	\odot	\odot	\odot	
Perse	\odot	\odot	\odot	\odot
PKS0745	\odot	\odot	\odot	\odot
RXCJ1504	?	?	?	\odot
Triang	<u></u>	<u></u>	©	
ZwCl1215	\odot	\odot		

INTEGRATED ACTIVITIES FOR THE HIGH-ENERGY ASTROPHYSICS DOMAIN

Stack residuals spectrum calculated

$$R_{i/ref} = \frac{data_i}{model_{ref} \otimes resp_i} \times \frac{model_{ref} \otimes resp_{ref}}{data_{ref}}$$

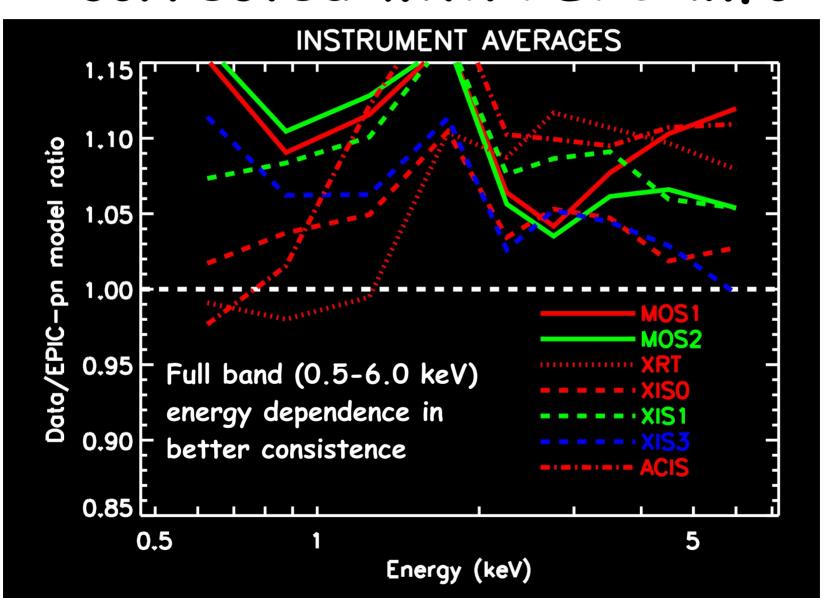



INTEGRATED ACTIVITIES FOR THE HIGH-ENERGY ASTROPHYSICS DOMAIN

- Scatter much bigger than the statistical uncertainties. Why?
- · Cool cores do not stand out

Average PSPC/pn SRS

Average PSPC/pn SRS


INTEGRATED ACTIVITIES FOR THE HIGH-ENERGY ASTROPHYSICS DOMAIN

- If PSPC absolutely correct, pn 0.7-2.0 keV band model prediction too high, i.e. effarea too low by 8-9%, not energy dependently
- Assuming this, the last year instr / pn model should be increased by 8-9% in the 0.7-2.0 keV band...

Old 4 clusters sample

Old 4 clusters sample corrected with PSPC info

Action items

- TASK 1: Check ROSAT PSPC calibration using one of our clusters (Jukka & M. Freyberg)
- TASK 2: Check one cluster with Konrad's methods.
 Needs isothermal region for simple and accurate modelling.
- TASK 3: Swift XRT flux weighting of ARF:s