An empirical method for improving the XMM-Newton/EPIC-pn RMF and ARFs

Konrad Dennerl - Max Planck Institute for extraterrestrial Physics – Garching - Germany

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

K. Dennerl / MPE

Swift XRT

Chandra

ACIS-S3

Suzaku XIS

1

1

13th IACHEC meeting

General properties of the ARF and RMF

ARF: "Ancillary Response File", RMF: "Redistribution Matrix File"

 \rightarrow find appropriate RMF parametrization and try to optimize it..

Model Parameters for the EPIC pn RMF

Model Parameters for the EPIC pn RMF

Interim result: algorithm works well, but resulting RMF depends heavily on assumed spectral models

Is there any possibility to expose the CCD to a known X-ray spectrum ?

Currently no, but for XMM/EPIC we can modify the incident spectrum in a controlled way!

There is a filter wheel..

Idea: observe the same (temporally constant, soft, non piled-up) X-ray source(s) with all available filters and fit the spectra simultaneously with the same RMF

using the same model spectrum for each source, with no normalization between the filters

significant improvement possible !

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

using the same model spectrum for each source, with no normalization between the filters

significant improvement possible !

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

Calibration of the first XMM Flight Mirror Module II - Effective Area

Ph. Gondoin^a, B. Aschenbach^b, M. Beijersbergen^a, R. Egger^b F. Jansen^a, Y. Stockman^c, J.P. Tock^c

^a European Space Research and Technology Center, 2200 AG Noordwijk zh, the Netherlands

^b Max-Planck Institute fur Extraterrestrische Physik, 8046 Garching, Germany

^c Centre Spatial de Liege, B-4031 Liege, Belgium

ARF ("Ancillary Response File")

- = mirror effective area
- * filter transmission
- * CCD quantum efficiency
- * fraction of single pixel events
- * threshold induced sensitivity drop

ARF ("Ancillary Response File")

- = mirror effective area
- * filter transmission
- * CCD quantum efficiency
- * fraction of single pixel events
- * threshold induced sensitivity drop

https://www.cosmos.esa.int/web/xmm-newton/technical-details-epic

13th IACHEC meeting

ARF ("Ancillary Response File")

- = mirror effective area
- * filter transmission
- * CCD quantum efficiency
- * fraction of single pixel events
- * threshold induced sensitivity drop

Figure 28: Quantum efficiency of the EPIC pn CCD chips as a function of photon energy (<u>Strüder et</u> al., 2001, A&A, 365, L18, Fig. 5).

ARF change modeled by absorption from C and O

ARF ("Ancillary Response File")

- mirror effective area =
- * filter transmission
- * **CCD quantum efficiency**
- * fraction of single pixel events
- * threshold induced sensitivity drop

1

0.9

fraction of singles

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

K. Dennerl / MPE

- **CCD quantum efficiency**
- * fraction of single pixel events
- * threshold induced sensitivity drop
- \rightarrow sensitivity should drop near low energy threshold

ARF components

ARF ("Ancillary Response File")

- mirror effective area =
- * filter transmission
- *

Threshold induced sensitivity drop ?

Threshold induced sensitivity drop ?

- → sensitivity should drop near low energy threshold, but not that much
- .. and in the QE determination, this effect should already have been implicitely considered

(approximately, depending on the low energy threshold used in the QE measurement)

correction for threshold induced sensitivity drop		
0.10 – 0.28 keV	0.28 – 1.74 keV	1.74 – 16.0 keV
free	free	fixed

filter dependent ARF correction	correction for carbon thickness	correction for oxygen thickness
thin	= 0 (fixed)	= 0 (fixed)
medium	= 0 (fixed)	= 0 (fixed)
thick	= 0 (fixed)	= 0 (fixed)

RXJ 1856

1E 0102

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

pat_frc

arf_cor

5 7 9 11 13 15 17 19 21

0.00

0.00

0.00

energy [keV]

0.5 1

0.1

0.00

0.00

0.00

5 10

1E 0102

constant: factor = 0.968

gain: offset = +2.0 eV

 $\chi^2_{\nu} = \frac{629.9}{293} = \frac{2.15}{293} = \frac{2.15}{293} = \frac{2.15}{293} = \frac{2.15}{293} = \frac{2.15}{293}$

0.5

 $\chi^2_{v} = \frac{580.9}{292} = \frac{1.99}{218.5}$

0.5

 $\chi^2_{v} = 1010.0 / 320 = 3.16$ = 336.4 / 320 - 1.05

0.5

channel energy ["keV"]

SW, rev 3000, THIN

1E0102,

rev 3000, MEDIUM

SW,

1E0102,

SW, rev 3000, THICK

E0102,

thick

thin

medium

gaussian: norm = 0.140E-02

gaussian: norm = 0.136E-02

gaussian: norm = 0.470E-02

RXJ 1856

K. Dennerl / MPE

13th IACHEC meeting

correction for threshold induced sensitivity drop		
0.10 – 0.28 keV	0.28 – 1.74 keV	1.74 – 16.0 keV
free	free	fixed

filter dependent ARF correction	correction for carbon thickness	correction for oxygen thickness
thin	= 20.23 (fixed)	= 44.72 (fixed)
medium	= 13.26 (fixed)	= 49.39 (fixed)
thick	= 20.91 (fixed)	= 33.40 (fixed)

0.8

0.6

0.4

1

0.8

0.6

0.4 [[]...

RXJ 1856

1E 0102

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

pat_frc

arf cor

44.72

49.39

33.40

5 10

3 5 7 9 11 13 15 17 19 21

20.23

13.26

20.91

energy [keV]

0.5 1

K. Dennerl / MPE

correction for threshold induced sensitivity drop		
0.10 – 0.28 keV	0.28 – 1.74 keV	1.74 – 16.0 keV
free	free	fixed

filter dependent ARF correction	correction for carbon thickness	correction for oxygen thickness
thin	free	free
medium	= C_cor(thin)	= O_cor(thin)
thick	= C_cor(thin)	= O_cor(thin)

0.8

0.6

0.4

0.9

0.8

0.7

0.6

0.1

same C + O absorption for all filters

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

pat_frc

arf_cor

25.37

25.37

25.37

5 10

3 5 7 9 11 13 15 17 19 21

14.19

14.19

14.19

energy [keV]

0.5 1

1E 0102

13th IACHEC meeting

RXJ 1856

correction for threshold induced sensitivity drop		
0.10 – 0.80 keV	0.80 – 1.74 keV	1.74 – 16.0 keV
free	fixed	fixed

filter dependent ARF correction	correction for carbon thickness	correction for oxygen thickness
thin	= 0 (fixed)	free
medium	= 0 (fixed)	free
thick	= 0 (fixed)	free

0.8

0.6

0.4

1

0.9

0.8

0.7

0.1

0.00

0.00

0.00

0.5 1

only absorption by oxygen

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

1E 0102

K. Dennerl / MPE

13th IACHEC meeting

correction for threshold induced sensitivity drop		
0.10 – 0.53 keV	0.53 – 1.74 keV	1.74 – 16.0 keV
free	fixed	fixed

filter dependent ARF correction	correction for carbon thickness	correction for oxygen thickness
thin	= 0 (fixed)	free
medium	= 0 (fixed)	= O_cor(thin)
thick	= 0 (fixed)	= O_cor(thin)

RXJ 1856

1E 0102

13th IACHEC meeting

Considering also the normalization

In the following fits, the model spectrum for RXJ 1856 is fixed to exactly the Chandra LETG values ..

correction for threshold induced sensitivity drop		
0.10 – 0.28 keV	0.28 – 1.74 keV	1.74 – 16.0 keV
free	free	fixed

filter dependent ARF correction	correction for carbon thickness	correction for oxygen thickness
thin	= 0 (fixed)	free
medium	= 0 (fixed)	= O_cor(thin)
thick	= 0 (fixed)	= O_cor(thin)

1E 0102

RXJ 1856

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

channel energy ["keV"]

channel energy ["keV"]

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

K. Dennerl / MPE

THIN

rev 3000,

SW,

E0102,

3000, MEDIUM

rev

SW,

02

EO

thin

nedium

Warning: ARF adjustments alone may be dangerous !

Example: XMM/EPIC-pn, simultaneous fit to RXJ 1856 and 1E0102 in three filters each, using the same model spectrum for each source, with no normalization between the filters

1E 0102

First tests of the modified RMF & ARF

by Frank Haberl

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

13th IACHEC meeting

La Tenuta dei Ciclamini, Italy, 2018 April 9 - 12

Current status

With the current RMF and ARF adjustments it is now possible to fit simultaneously spectra of **RXJ1856** and **1E0102** obtained with **all three EPIC pn filters** in revs 2995 – 3000 in SW mode at the aimpoint **without any renormalization between the filters**, and using the **unmodified Chandra LETG spectral parameters** for RXJ 1856. The ARF adjustment requires only a slight increase of the oxygen thickness (with the same value for all filters).

Current restrictions:

- only soft (< 2 keV) spectra used (to avoid complications with photon escape)
- only SW mode spectra analysed (excellent photon statistics, negligible pile-up)
- only aimpoint region analysed (to minimise spatial dependencies)
- only rev 2995 3000 period analysed (to minimise temporal dependencies)

Extensions needed:

- full spectral range
- other readout modes: FF, eFF, LW, TI, BU
- full field of view
- full time span

How to proceed..

below 1.7 keV no photon escape RMF must be available for full energy range

SW is useful for initial studies (high source flux, good statistics)

FF is the standard mode

in most of the observations the target is located at the aimpoint in order to analyse existing observations, the aimpoint area must be calibrated

temporal dependence must be known in order to analyse more observations