NuSTAR Observatory

- NASA small explorer astrophysics mission
- PI Fiona Harrison (Caltech)
- Partners: ASI, SSDC, DTK, HEASARC
- Launched on June 2012, 620 km, 6° orbit
- Orbital-ATK LeoStar-2 spacecraft bus

- Conical Wolter-I approximation
 - 133 shells (43 W/Si, 90 Pt/C)
 - HPD = 1 arcminute
 - FOV = 12’ x 12’

- CdZnTe detectors
 - 4x(32x32 pixels)

- Resolution:
 - 400 eV @ 6 keV
 - 900 eV @ 60 keV
 - 3 ms time resolution

- 10.14m focal length
- Extendable Mast

- No consumables
- Single string
- >10 year lifetime

IACHEC 2018 Avigliano
NuSTAR Observatory

Energy Range: 3 – 78 keV

- NuSTAR
- Chandra ACIS
- XMM EPIC-pn
- Swift XRT
- (Hitomi HXI)

NASA small explorer astrophysics mission
PI Fiona Harrison (Caltech)
Partners: ASI, ASDC, DTK, HEASARC
Launched on June 2012, 620 km, 6° orbit
Orbital ATK LeoStar-2 spacecraft bus
CdZnTe detectors 4x(32x32 pixels)
Resolution:
 - 400 eV @ 6 keV
 - 900 eV @ 60 keV
10.14 m focal length
Extendable Mast

Energy Range: 3 – 78 keV

1000

Area (cm²)

10

Energy (keV)

No consumables
Single string
10 year lifetime

Extendable Mast

Hitomi HXI
NuSTAR Observatory

- NASA small explorer astrophysics mission
- PI Fiona Harrison (Caltech)
- Partners: ASI, ASDC, DTK, HEASARC
- Launched on June 2012, 620 km, 6° orbit
- Orbital ATK LeoStar spacecraft bus
- CdZnTe detectors 4x(32x32 pixels)
- Resolution: 400 eV @ 6 keV, 900 eV @ 60 keV
- 3 ms time resolution
- Extendable Mast
- Mission lifetime potentially past mid 2020’s

Wolter-I approximation shells (43 W/Si, 90 Pt/C)
HPD = 1 arcminute
FOV = 12’ x 12’

Mission lifetime potentially past mid 2020’s

No consumables
Single string
10 year lifetime
Calibration & Status

Observatory status is green

2017 Calibration news

- Detector monitoring indicates gain has remained ~steady since 2016
 - *Long term gain calibration of NuSTAR detectors* - Brian Grefenstette - this afternoon
- Monthly Crab calibration observations – focussed and straylight
 - Monitor detector absorption parameters, absolute normalization and vignetting
 - *Update on Crab cross-calibration* - Kristin Madsen - Wednesday afternoon
- Timing calibration improvements
 - Goal is to provide relative timing accuracy of a few μs

2018 Operations news

- New observing constraints implemented in 2018
 - Sun avoidance update Saa > 43° (was 39°, improvement in knowledge of astrometry star tracker behavior)
 - Mast leaning constraints (-X 90° < Saa < 110°, +X 70° < Saa < 80°)
 - Metrology calibration limit (104° < Saa < 106°)
 - Optics thermal avoidance (145° < Saa < 160°)
- Mast adjustment planned for 2018 May
- Increase in multi-observatory coordinations for calibration (and science!)
 - Improvement in communication between operations teams, particularly for ToO’s
Long term gain monitoring – Highlights
Brian Grefenstette

- Large dynamic range (2-200 keV) of NuSTAR CZT detectors requires two methods to determine any variations of the transfer function with time.

 \[PI = P_{I0} \times \text{SLOPE} + \text{OFFSET} \]

- **Method 1**: Use background lines at 105, 121, and 144 keV to monitor the SLOPE variations with time.

- Method 2: Use routine observations of Kepler to monitor any OFFSET variations with time.

- Gain has plateau’d since 2016.

- Plot shows the measured line centroid per year for Det0 on **FPMA** and **FPMB** with linear 0.2% / year SLOPE change.

- Investigating last data point and overall trend (non-linear?)

 - No time variation applied after this date

 ![Actual line energy](chart.png)

 ![No time variation applied after this date](chart.png)
Long term gain monitoring – Highlights
Brian Grefenstette

- Large dynamic range (2-200 keV) of NuSTAR CZT detectors requires two methods to measure any variations of the transfer function with time.

\[PI = PI_0 \times SLOPE + OFFSET \]

- Method 1: Use background lines at 105, 121, and 144 keV to monitor the SLOPE variations with time.

- Method 2: Use routine observations of Kepler to monitor any OFFSET variations with time

- Offset shows no time-dependence.

- Will continue to monitor Kepler at ~6 month intervals to confirm stability of offset.

- Multi-epoch fits to Kepler show OFFSET variations over a few years of ~20+/-10 eV.

Full discussion by Brian G. in the Detectors and Background WG this afternoon
Re-calibration of detector absorption, absolute normalization, and the vignetting files

Scope: The new Crab campaign expands upon our focused Crab data base (50 observations) and complements it with StrayLight observations.

- Absolute normalization: StrayLight observations
- Detector absorption: StrayLight observations
- Vignetting files: focused Crab observations from the entire mission lifetime

Relative normalization of the Crab SL observation with Swift/BAT

Crab correction curves for different off-axis angles

Full discussion by Kristin M. in the Coordinated Obs and Non-Thermal SNR WG’s
Timing calibration status

Matteo Bachetti, Craig Markwardt, Eric Gotthelf

• Current Method:
 • Based on point measurements of clock drift during ground-station passes.
 • Results in absolute and relative timing uncertainties on the order of a few milliseconds via barycorr.
 • Residual orbit-timescale variations in photon arrival times observed for millisecond pulsars.

• New method
 • Inclusion of a new engineering data point (the clock oscillator temperature) and trying a “first principles” clock correction.
 • Will result in some barycorr-like FTOOL for NuSTAR.
 • Work in progress; aim to have results by this summer’s SPIE meeting.

Clear shift by +/- 400 μs Originating in clock frequency variations on orbital timescales

Pulse-phase drift for PSR B1821-24 (~3 ms period)
New observing constraints

- Avoid observing at certain ranges of Solar aspect angle (Saa)
- Translates into scheduling constraints

<table>
<thead>
<tr>
<th>MJD</th>
<th>Mast 0 X (mm)</th>
<th>Time (MJD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>56550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mast adjustment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MJD</th>
<th>Mast 1 X (mm)</th>
<th>Time (MJD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>56550</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mast adjustment</td>
<td></td>
</tr>
</tbody>
</table>

MJD=57670
Change in mast position after 10 days of observations at SAA ~ 155°

MJD=58090
Latest drift resulted in Metrology out of calibrated range for 2 observations
New observing constraints

- Avoid observing at certain ranges of Solar aspect angle (Saa)
 - Translates into scheduling constraints

Extremes of mast leaning
- Time constrained observations are granted waivers

Metrology OOL avoidance
- Loss of calibration
- No waivers

Mast leaning vs Saa

- 70° < Saa < 80°
- 90° < Saa < 110°

Metrology OOL Avoidance
Saa 105 ±1°
Mast adjustment - 2018

- We plan to perform another adjustment of the optics / mast interface
 - Periodic adjustments using the mast adjustment mechanism were expected
 - MAM adjustment performed twice before, during IOC and in 2013 September
 - Shift by a few mm in two directions
- Should bring Metrology system back into calibrated range for extremes of mast bending
Optics thermal constraints

- Avoid observing at certain ranges of Solar aspect angle (Saa)
- Translates into scheduling constraints

Optics thermal behavior

- Change in behavior occurred around 2017-09-25
- Most obvious on outermost sensor on optic 0
- Change not seen in optic 1
Optics thermal constraints

- Avoid observing at certain ranges of Solar aspect angle (Saa)
 - Translates into scheduling constraints

- Apparent degradation has occurred near the thermal sensor on the rear exterior of Optic 0
- Likely a hole or tear in optics cover
- Optics bench qualified to 70 °C
- Current Red limit set at 55 °C
- Avoid observations in range 145 ° < Saa < 160 °
- Waivers for short observations of time constrained targets may be granted
Multi-observatory coordination

- **Steadily improving coordination between high energy missions**
 - Regular group notification of acceptance and timing unanticipated ToO observations
 - The **Crab calibration** observations on 2018-03-13/14 is an excellent example
 - Scheduled as monthly NuSTAR calibration observation
 - Request from XMM-Newton for simultaneous observations -> schedule adjustment
 - Including straylight exposures during XMM-Newton exposures
 - To determine if adjustments in EPIC-pn calibration should be made
- Notification to other teams resulted in major cross calibration event
 - *Astrosat, Insight (HXMT), INTEGRAL, Swift-BAT, Fermi*
- Crab exhibited gamma-ray flare episode just before start of observations
 - Simultaneous radio telescope observations (Japan)
- Major transient events are now regularly scheduled with *unanticipated* contemporaneous observations
 - E.g. Swift J1658.2-4242, MAXI J1820+070
- Coordination will be improved by development of VO protocols for observatory operations
 - Led by ops team members at ESA (INTEGRAL + XMM) and CXC
Summary

- Calibration update planned for later this year
 - Absolute normalization, vignetting, detector absorption parameters
 - New clock correction FTOOL - relative timing accuracy improvement
- Yearly IACHEC cross calibration campaign on 3C 273 – July 2018
- Mast adjustment should solve metrology calibration limits for Saa ~ 105°
 - Mast bending will continue to be monitored
 - Saa constraints remain in place
- Optics thermal behavior also monitored
 - Saa avoidance remain in place
- The additional scheduling constraints will have minor impact on science (or calibration) observations
- Recommendation of NASA senior review in 2019 will determine if mission is extended another 3 years
 - *Observatory status is green*